Mots-clés : bivariate normal distribution
@article{TVP_2022_67_3_a7,
author = {J. Toofanpour and M. Javanian and R. Imany-Nabiyyi},
title = {Normal limit law for protected node profile of random recursive trees},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {563--578},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a7/}
}
TY - JOUR AU - J. Toofanpour AU - M. Javanian AU - R. Imany-Nabiyyi TI - Normal limit law for protected node profile of random recursive trees JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 563 EP - 578 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a7/ LA - ru ID - TVP_2022_67_3_a7 ER -
J. Toofanpour; M. Javanian; R. Imany-Nabiyyi. Normal limit law for protected node profile of random recursive trees. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 563-578. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a7/
[1] L. Devroye, S. Janson, “Protected nodes and fringe subtrees in some random trees”, Electron. Commun. Probab., 19 (2014), 6, 10 pp. | DOI | MR | Zbl
[2] M. Dondajewski, J. Szymański, “On the distribution of vertex-degrees in a strata of a random recursive tree”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 30:5-6 (1982), 205–209 | MR | Zbl
[3] M. Drmota, Random trees. An interplay between combinatorics and probability, Springer-Verlag, Vienna, 2009, xviii+458 pp. | DOI | MR | Zbl
[4] M. Drmota, M. Fuchs, Hsien-Kuei Hwang, R. Neininger, “Node profiles of symmetric digital search trees: concentration properties”, Random Structures Algorithms, 58:3 (2021), 430–467 ; (2020 (v1 – 2017)), 34 pp., arXiv: 1711.06941 | DOI | MR
[5] P. Flajolet, A. Odlyzko, “Singularity analysis of generating functions”, SIAM J. Discrete Math., 3:2 (1990), 216–240 | DOI | MR | Zbl
[6] M. Fuchs, Hsien-Kuei Hwang, R. Neininger, “Profiles of random trees: limit theorems for random recursive trees and binary search trees”, Algorithmica, 46:3-4 (2006), 367–407 | DOI | MR | Zbl
[7] M. Fuchs, C. K. Lee, G. R. Yu, “On 2-protected nodes in random digital trees”, Theoret. Comput. Sci., 622 (2016), 111–122 | DOI | MR | Zbl
[8] C. Heuberger, S. Kropf, “Higher dimensional quasi-power theorem and Berry–Esseen inequality”, Monatsh. Math., 187:2 (2018), 293–314 | DOI | MR | Zbl
[9] Hsien-Kuei Hwang, “Asymptotic expansions for the stirling numbers of the first kind”, J. Combin. Theory Ser. A, 71:2 (1995), 343–351 | DOI | MR | Zbl
[10] Hsien-Kuei Hwang, “Profiles of random trees: plane-oriented recursive trees”, Random Structures Algorithms, 30:3 (2007), 380–413 | DOI | MR | Zbl
[11] Hsien-Kuei Hwang, M. Fuchs, V. Zacharovas, “Asymptotic variance of random symmetric digital search trees”, Discrete Math. Theor. Comput. Sci., 12:2 (2010), 103–165 | MR | Zbl
[12] M. Javanian, “Protected node profile of tries”, Discrete Math. Theor. Comput. Sci., 20:1 (2018), 12, 20 pp. | MR | Zbl
[13] H. M. Mahmoud, M. D. Ward, “Asymptotic properties of protected nodes in random recursive trees”, J. Appl. Probab., 52:1 (2015), 290–297 | DOI | MR | Zbl
[14] A. Meir, J. W. Moon, “Cutting down recursive trees”, Math. Biosci., 21:3-4 (1974), 173–181 | DOI | Zbl
[15] A. Meir, J. W. Moon, “On the altitude of nodes in random trees”, Canad. J. Math., 30:5 (1978), 997–1015 | DOI | MR | Zbl
[16] G. Park, Hsien-Kuei Hwang, P. Nicodème, W. Szpankowski, “Profiles of tries”, SIAM J. Comput., 38:5 (2009), 1821–1880 | DOI | MR | Zbl
[17] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | DOI | MR | MR | Zbl | Zbl
[18] S. M. Sadikova, “Two-dimensional analogues of an inequality of Esseen with applications to the central limit theorem”, Theory Probab. Appl., 11:3 (1966), 325–335 | DOI | MR | Zbl
[19] R. T. Smythe, H. M. Mahmoud, “A survey of recursive trees”, Theory Probab. Math. Stat., 51 (1995), 1–27 | MR | Zbl
[20] P. Van Mieghem, G. Hooghiemstra, R. van der Hofstad, “On the efficiency of multicast”, IEEE/ACM Trans. Netw., 9:6 (2001), 719–732 | DOI