@article{TVP_2022_67_3_a6,
author = {T. C. Son and L. V. Dung and D. T. Dat and T. T. Trang},
title = {Generalized {Marcinkiewicz} laws for weighted dependent random vectors in {Hilbert} spaces},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {541--562},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/}
}
TY - JOUR AU - T. C. Son AU - L. V. Dung AU - D. T. Dat AU - T. T. Trang TI - Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 541 EP - 562 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/ LA - ru ID - TVP_2022_67_3_a6 ER -
%0 Journal Article %A T. C. Son %A L. V. Dung %A D. T. Dat %A T. T. Trang %T Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces %J Teoriâ veroâtnostej i ee primeneniâ %D 2022 %P 541-562 %V 67 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/ %G ru %F TVP_2022_67_3_a6
T. C. Son; L. V. Dung; D. T. Dat; T. T. Trang. Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 541-562. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/
[1] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl
[2] R. M. Burton, A. R. Dabrowski, H. Dehling, “An invariance principle for weakly associated random vectors”, Stochastic Process. Appl., 23:2 (1986), 301–306 | DOI | MR | Zbl
[3] Jun Cai, Ken Seng Tan, “Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures”, Astin Bull., 37:1 (2007), 93–112 | DOI | MR | Zbl
[4] A. Chiragiev, Z. Landsman, “Multivariate Pareto portfolios: TCE-based capital allocation and divided differences”, Scand. Actuar. J., 2007:4 (2007), 261–280 | DOI | MR | Zbl
[5] T. C. Christofides, E. Vaggelatou, “A connection between supermodular ordering and positive/negative association”, J. Multivariate Anal., 88:1 (2004), 138–151 | DOI | MR | Zbl
[6] H. Dehling, O. Sh. Sharipov, M. Wendler, “Bootstrap for dependent Hilbert space-valued random variables with application to von Mises statistics”, J. Multivariate Anal., 133 (2015), 200–215 | DOI | MR | Zbl
[7] Dung Van Le, Son Cong Ta, Cuong Manh Tran, “Weak laws of large numbers for weighted coordinatewise pairwise NQD random vectors in Hilbert spaces”, J. Korean Math. Soc., 56:2 (2019), 457–473 | DOI | MR | Zbl
[8] L. V. Dung, T. C. Son, N. T. H. Yen, “Weak laws of large numbers for sequences of random variables with infinite $r$th moments”, Acta. Math. Hungar., 156:2 (2018), 408–423 | DOI | MR | Zbl
[9] Taizhong Hu, “Negatively superadditive dependence of random variables with applications”, Chinese J. Appl. Probab. Statist., 16:2 (2000), 133–144 | MR | Zbl
[10] R. Jajte, “On the strong law of large numbers”, Ann. Probab., 31:1 (2003), 409–412 | DOI | MR | Zbl
[11] J. Karamata, “Sur un mode de croissance régulière des fonctions”, Mathematica (Cluj), 4 (1930), 38–53 | Zbl
[12] Mi-Hwa Ko, “Complete convergence for coordinatewise asymptotically negatively associated random vectors in Hilbert spaces”, Comm. Statist. Theory Methods, 47:3 (2018), 671–680 | DOI | MR | Zbl
[13] E. L. Lehmann, “Some concepts of dependence”, Ann. Math. Statist., 37:5 (1966), 1137–1153 | DOI | MR | Zbl
[14] Deli Li, A. Rosalsky, A. Volodin, “On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables”, Bull. Inst. Math. Acad. Sin. (N. S.), 1:2 (2006), 281–305 | MR | Zbl
[15] V. Pareto, Cours d'économie politique, v. 2, Rouge et Cie, Paris, 1897, 426 pp.
[16] Son Cong Ta, Cuong Manh Tran, Dung Van Le, “On the almost sure convergence for sums of negatively superadditive dependent random vectors in Hilbert spaces and its application”, Comm. Statist. Theory Methods, 49:11 (2020), 2770–2786 | DOI | MR | Zbl
[17] Ta Cong Son, Le Van Dung, “Central limit theorems for weighted sums of dependent random vectors in Hilbert spaces via the theory of the regular variation”, J. Theoret. Probab., 35:2 (2022), 988–1012 | DOI | MR | Zbl
[18] Soo Hak Sung, “On the strong law of large numbers for weighted sums of random variables”, Comput. Math. Appl., 62:11 (2011), 4277–4287 | DOI | MR | Zbl
[19] Z. S. Szewczak, “Relative stability for strictly stationary sequences”, J. Multivariate Anal., 78:2 (2001), 235–251 | DOI | MR | Zbl
[20] Z. S. Szewczak, “Marcinkiewicz laws with infinite moments”, Acta Math. Hungar., 127:1-2 (2010), 64–84 | DOI | MR | Zbl
[21] Xuejun Wang, Xiaoqin Li, Shuhe Hu, Wenzhi Yang, “Strong limit theorems for weighted sums of negatively associated random variables”, Stoch. Anal. Appl., 29:1 (2011), 1–14 | DOI | MR | Zbl