Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 541-562

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to apply the theory of regularly varying functions for studying Marcinkiewicz weak and strong laws of large numbers for the weighted sum $S_n=\sum_{j=1}^{m_n}c_{nj}X_j$, where $(X_n;\, n\geq 1)$ is a sequence of dependent random vectors in Hilbert spaces, and $(c_{nj})$ is an array of real numbers. Moreover, these results are applied to obtain some results on the convergence of multivariate Pareto–Zipf distributions and multivariate log-gamma distributions.
Keywords: Marcinkiewicz laws of large numbers, dependent random vectors, Hilbert spaces, weighted sums.
@article{TVP_2022_67_3_a6,
     author = {T. C. Son and L. V. Dung and D. T. Dat and T. T. Trang},
     title = {Generalized {Marcinkiewicz} laws for weighted dependent random vectors in {Hilbert} spaces},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {541--562},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/}
}
TY  - JOUR
AU  - T. C. Son
AU  - L. V. Dung
AU  - D. T. Dat
AU  - T. T. Trang
TI  - Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 541
EP  - 562
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/
LA  - ru
ID  - TVP_2022_67_3_a6
ER  - 
%0 Journal Article
%A T. C. Son
%A L. V. Dung
%A D. T. Dat
%A T. T. Trang
%T Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 541-562
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/
%G ru
%F TVP_2022_67_3_a6
T. C. Son; L. V. Dung; D. T. Dat; T. T. Trang. Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 541-562. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/