Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 541-562 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to apply the theory of regularly varying functions for studying Marcinkiewicz weak and strong laws of large numbers for the weighted sum $S_n=\sum_{j=1}^{m_n}c_{nj}X_j$, where $(X_n;\, n\geq 1)$ is a sequence of dependent random vectors in Hilbert spaces, and $(c_{nj})$ is an array of real numbers. Moreover, these results are applied to obtain some results on the convergence of multivariate Pareto–Zipf distributions and multivariate log-gamma distributions.
Keywords: Marcinkiewicz laws of large numbers, dependent random vectors, Hilbert spaces, weighted sums.
@article{TVP_2022_67_3_a6,
     author = {T. C. Son and L. V. Dung and D. T. Dat and T. T. Trang},
     title = {Generalized {Marcinkiewicz} laws for weighted dependent random vectors in {Hilbert} spaces},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {541--562},
     year = {2022},
     volume = {67},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/}
}
TY  - JOUR
AU  - T. C. Son
AU  - L. V. Dung
AU  - D. T. Dat
AU  - T. T. Trang
TI  - Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 541
EP  - 562
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/
LA  - ru
ID  - TVP_2022_67_3_a6
ER  - 
%0 Journal Article
%A T. C. Son
%A L. V. Dung
%A D. T. Dat
%A T. T. Trang
%T Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 541-562
%V 67
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/
%G ru
%F TVP_2022_67_3_a6
T. C. Son; L. V. Dung; D. T. Dat; T. T. Trang. Generalized Marcinkiewicz laws for weighted dependent random vectors in Hilbert spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 541-562. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a6/

[1] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl

[2] R. M. Burton, A. R. Dabrowski, H. Dehling, “An invariance principle for weakly associated random vectors”, Stochastic Process. Appl., 23:2 (1986), 301–306 | DOI | MR | Zbl

[3] Jun Cai, Ken Seng Tan, “Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures”, Astin Bull., 37:1 (2007), 93–112 | DOI | MR | Zbl

[4] A. Chiragiev, Z. Landsman, “Multivariate Pareto portfolios: TCE-based capital allocation and divided differences”, Scand. Actuar. J., 2007:4 (2007), 261–280 | DOI | MR | Zbl

[5] T. C. Christofides, E. Vaggelatou, “A connection between supermodular ordering and positive/negative association”, J. Multivariate Anal., 88:1 (2004), 138–151 | DOI | MR | Zbl

[6] H. Dehling, O. Sh. Sharipov, M. Wendler, “Bootstrap for dependent Hilbert space-valued random variables with application to von Mises statistics”, J. Multivariate Anal., 133 (2015), 200–215 | DOI | MR | Zbl

[7] Dung Van Le, Son Cong Ta, Cuong Manh Tran, “Weak laws of large numbers for weighted coordinatewise pairwise NQD random vectors in Hilbert spaces”, J. Korean Math. Soc., 56:2 (2019), 457–473 | DOI | MR | Zbl

[8] L. V. Dung, T. C. Son, N. T. H. Yen, “Weak laws of large numbers for sequences of random variables with infinite $r$th moments”, Acta. Math. Hungar., 156:2 (2018), 408–423 | DOI | MR | Zbl

[9] Taizhong Hu, “Negatively superadditive dependence of random variables with applications”, Chinese J. Appl. Probab. Statist., 16:2 (2000), 133–144 | MR | Zbl

[10] R. Jajte, “On the strong law of large numbers”, Ann. Probab., 31:1 (2003), 409–412 | DOI | MR | Zbl

[11] J. Karamata, “Sur un mode de croissance régulière des fonctions”, Mathematica (Cluj), 4 (1930), 38–53 | Zbl

[12] Mi-Hwa Ko, “Complete convergence for coordinatewise asymptotically negatively associated random vectors in Hilbert spaces”, Comm. Statist. Theory Methods, 47:3 (2018), 671–680 | DOI | MR | Zbl

[13] E. L. Lehmann, “Some concepts of dependence”, Ann. Math. Statist., 37:5 (1966), 1137–1153 | DOI | MR | Zbl

[14] Deli Li, A. Rosalsky, A. Volodin, “On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables”, Bull. Inst. Math. Acad. Sin. (N. S.), 1:2 (2006), 281–305 | MR | Zbl

[15] V. Pareto, Cours d'économie politique, v. 2, Rouge et Cie, Paris, 1897, 426 pp.

[16] Son Cong Ta, Cuong Manh Tran, Dung Van Le, “On the almost sure convergence for sums of negatively superadditive dependent random vectors in Hilbert spaces and its application”, Comm. Statist. Theory Methods, 49:11 (2020), 2770–2786 | DOI | MR | Zbl

[17] Ta Cong Son, Le Van Dung, “Central limit theorems for weighted sums of dependent random vectors in Hilbert spaces via the theory of the regular variation”, J. Theoret. Probab., 35:2 (2022), 988–1012 | DOI | MR | Zbl

[18] Soo Hak Sung, “On the strong law of large numbers for weighted sums of random variables”, Comput. Math. Appl., 62:11 (2011), 4277–4287 | DOI | MR | Zbl

[19] Z. S. Szewczak, “Relative stability for strictly stationary sequences”, J. Multivariate Anal., 78:2 (2001), 235–251 | DOI | MR | Zbl

[20] Z. S. Szewczak, “Marcinkiewicz laws with infinite moments”, Acta Math. Hungar., 127:1-2 (2010), 64–84 | DOI | MR | Zbl

[21] Xuejun Wang, Xiaoqin Li, Shuhe Hu, Wenzhi Yang, “Strong limit theorems for weighted sums of negatively associated random variables”, Stoch. Anal. Appl., 29:1 (2011), 1–14 | DOI | MR | Zbl