A~note on the Berry--Esseen bounds for $\rho$-mixing random variables and their application
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 519-540

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, Wang and Hu [Theory Probab. Appl., 63 (2019), pp. 479–499] established the Berry–Esseen bounds for $\rho$-mixing random variables (r.v.'s) with the rate of normal approximation $O(n^{-1/6}\log n)$ by using the martingale method. In this paper, we establish some general results on the rates of normal approximation, which include the corresponding ones of Wang and Hu. The rate can be as high as $O(n^{-1/5})$ or $O(n^{-1/4}\log^{1/2} n)$ under some suitable conditions. As applications, we obtain the Berry–Esseen bounds of sample quantiles based on $\rho$-mixing random samples. Finally, we also present some numerical simulations to demonstrate finite sample performances of the theoretical result.
Keywords: Berry–Esseen bound, asymptotic normality, nonparametric regression model, $\rho$-mixing random variables
Mots-clés : sample quantiles.
@article{TVP_2022_67_3_a5,
     author = {C. Lu and W. Yu and R. L. Ji and H. L. Zhou and X. J. Wang},
     title = {A~note on the {Berry--Esseen} bounds for $\rho$-mixing random variables and their application},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {519--540},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/}
}
TY  - JOUR
AU  - C. Lu
AU  - W. Yu
AU  - R. L. Ji
AU  - H. L. Zhou
AU  - X. J. Wang
TI  - A~note on the Berry--Esseen bounds for $\rho$-mixing random variables and their application
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 519
EP  - 540
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/
LA  - ru
ID  - TVP_2022_67_3_a5
ER  - 
%0 Journal Article
%A C. Lu
%A W. Yu
%A R. L. Ji
%A H. L. Zhou
%A X. J. Wang
%T A~note on the Berry--Esseen bounds for $\rho$-mixing random variables and their application
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 519-540
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/
%G ru
%F TVP_2022_67_3_a5
C. Lu; W. Yu; R. L. Ji; H. L. Zhou; X. J. Wang. A~note on the Berry--Esseen bounds for $\rho$-mixing random variables and their application. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 519-540. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/