A note on the Berry–Esseen bounds for $\rho$-mixing random variables and their application
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 519-540 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently, Wang and Hu [Theory Probab. Appl., 63 (2019), pp. 479–499] established the Berry–Esseen bounds for $\rho$-mixing random variables (r.v.'s) with the rate of normal approximation $O(n^{-1/6}\log n)$ by using the martingale method. In this paper, we establish some general results on the rates of normal approximation, which include the corresponding ones of Wang and Hu. The rate can be as high as $O(n^{-1/5})$ or $O(n^{-1/4}\log^{1/2} n)$ under some suitable conditions. As applications, we obtain the Berry–Esseen bounds of sample quantiles based on $\rho$-mixing random samples. Finally, we also present some numerical simulations to demonstrate finite sample performances of the theoretical result.
Keywords: Berry–Esseen bound, asymptotic normality, nonparametric regression model, $\rho$-mixing random variables
Mots-clés : sample quantiles.
@article{TVP_2022_67_3_a5,
     author = {C. Lu and W. Yu and R. L. Ji and H. L. Zhou and X. J. Wang},
     title = {A~note on the {Berry{\textendash}Esseen} bounds for $\rho$-mixing random variables and their application},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {519--540},
     year = {2022},
     volume = {67},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/}
}
TY  - JOUR
AU  - C. Lu
AU  - W. Yu
AU  - R. L. Ji
AU  - H. L. Zhou
AU  - X. J. Wang
TI  - A note on the Berry–Esseen bounds for $\rho$-mixing random variables and their application
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 519
EP  - 540
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/
LA  - ru
ID  - TVP_2022_67_3_a5
ER  - 
%0 Journal Article
%A C. Lu
%A W. Yu
%A R. L. Ji
%A H. L. Zhou
%A X. J. Wang
%T A note on the Berry–Esseen bounds for $\rho$-mixing random variables and their application
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 519-540
%V 67
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/
%G ru
%F TVP_2022_67_3_a5
C. Lu; W. Yu; R. L. Ji; H. L. Zhou; X. J. Wang. A note on the Berry–Esseen bounds for $\rho$-mixing random variables and their application. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 519-540. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/

[1] R. C. Bradley, “A stationary rho-mixing Markov chain which is not “interlaced” rho-mixing”, J. Theoret. Probab., 14:3 (2001), 717–727 | DOI | MR | Zbl

[2] M. N. Chang, P. V. Rao, “Berry–Esseen bound for the Kaplan–Meier estimator”, Comm. Statist. Theory Methods, 18:12 (1989), 4647–4664 | DOI | MR | Zbl

[3] Yong-Kab Choi, Soo Hak Sung, Hee-Jin Moon, “Self-normalized limit theorems for linear processes generated by $\rho$-mixing innovations”, Lith. Math. J., 57:1 (2017), 13–29 | DOI | MR | Zbl

[4] Xin Deng, Xuejun Wang, Yi Wu, “The Berry–Esseen type bounds of the weighted estimator in a nonparametric model with linear process errors”, Statist. Papers, 62:2 (2021), 963–984 | DOI | MR | Zbl

[5] V. F. Gaposhkin, “Moment estimates for integrals of $\rho$-mixing random fields”, Russian Math. Surveys, 43:5 (1988), 223–224 | DOI | MR | Zbl

[6] I. A. Ibragimov, “Some limit theorems for stationary processes”, Theory Probab. Appl., 7:4 (1962), 349–382 | DOI | MR | Zbl

[7] A. N. Kolmogorov, Y. A. Rozanov, “On strong mixing conditions for stationary Gaussian processes”, Theory Probab. Appl., 5:2 (1960), 204–208 | DOI | MR | Zbl

[8] Tingting Liu, Zhimian Zhang, Shuhe Hu, Wenzhi Yang, “The Berry–Esséen bound of sample quantiles for NA sequence”, J. Inequal. Appl., 2014 (2014), 79, 7 pp. | DOI | MR | Zbl

[9] M. Peligrad, Qi Man Shao, “Estimation of the variance of partial sums for $\rho$-mixing random variables”, J. Multivariate Anal., 52:1 (1995), 140–157 | DOI | MR | Zbl

[10] V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp. | MR | Zbl

[11] R. D. Reiss, “On the accuracy of the normal approximation for quantiles”, Ann. Probab., 2:4 (1974), 741–744 | DOI | MR | Zbl

[12] R. J. Serfling, Approximation theorems of mathematical statistics, Wiley Ser. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1980, xiv+371 pp. | DOI | MR | Zbl

[13] Qiman Shao, “Exponential inequalities for dependent random variables”, Acta Math. Appl. Sinica (English Ser.), 6:4 (1990), 338–350 | DOI | MR | Zbl

[14] Qi-Man Shao, “Maximal inequalities for partial sums of $\rho$-mixing sequences”, Ann. Probab., 23:2 (1995), 948–965 | DOI | MR | Zbl

[15] X. J. Wang, S. H. Hu, “The Berry–Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model”, Teoriya veroyatn. i ee primen., 63:3 (2018), 584–608 ; Theory Probab. Appl., 63:3 (2019), 479–499 | DOI | MR | Zbl | DOI

[16] Wenzhi Yang, Xuejun Wang, Shuhe Hu, “A note on the Berry–Esséen bound of sample quantiles for $\varphi$-mixing sequence”, Comm. Statist. Theory Methods, 43:19 (2014), 4187–4194 | DOI | MR | Zbl

[17] Wenzhi Yang, Xuejun Wang, Xiaoqin Li, Shuhe Hu, “Berry–Esséen bound of sample quantiles for $\varphi$-mixing random variables”, J. Math. Anal. Appl., 388:1 (2012), 451–462 | DOI | MR | Zbl

[18] Qinchi Zhang, Wenzhi Yang, Shuhe Hu, “On Bahadur representation for sample quantiles under $\alpha$-mixing sequence”, Statist. Papers, 55:2 (2014), 285–299 | DOI | MR | Zbl