A~note on the Berry--Esseen bounds for $\rho$-mixing random variables and their application
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 519-540
Voir la notice de l'article provenant de la source Math-Net.Ru
Recently, Wang and Hu [Theory Probab. Appl., 63 (2019),
pp. 479–499] established the Berry–Esseen bounds for $\rho$-mixing random
variables (r.v.'s) with the rate of normal approximation $O(n^{-1/6}\log n)$
by using the martingale method. In this paper, we establish some general
results on the rates of normal approximation, which include the corresponding
ones of Wang and Hu. The rate can be as high as $O(n^{-1/5})$ or
$O(n^{-1/4}\log^{1/2} n)$ under some suitable conditions. As applications, we obtain the Berry–Esseen bounds of sample quantiles based on $\rho$-mixing
random samples. Finally, we also present some numerical simulations to
demonstrate finite sample performances of the theoretical result.
Keywords:
Berry–Esseen bound, asymptotic normality, nonparametric regression model, $\rho$-mixing random variables
Mots-clés : sample quantiles.
Mots-clés : sample quantiles.
@article{TVP_2022_67_3_a5,
author = {C. Lu and W. Yu and R. L. Ji and H. L. Zhou and X. J. Wang},
title = {A~note on the {Berry--Esseen} bounds for $\rho$-mixing random variables and their application},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {519--540},
publisher = {mathdoc},
volume = {67},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/}
}
TY - JOUR AU - C. Lu AU - W. Yu AU - R. L. Ji AU - H. L. Zhou AU - X. J. Wang TI - A~note on the Berry--Esseen bounds for $\rho$-mixing random variables and their application JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 519 EP - 540 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/ LA - ru ID - TVP_2022_67_3_a5 ER -
%0 Journal Article %A C. Lu %A W. Yu %A R. L. Ji %A H. L. Zhou %A X. J. Wang %T A~note on the Berry--Esseen bounds for $\rho$-mixing random variables and their application %J Teoriâ veroâtnostej i ee primeneniâ %D 2022 %P 519-540 %V 67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/ %G ru %F TVP_2022_67_3_a5
C. Lu; W. Yu; R. L. Ji; H. L. Zhou; X. J. Wang. A~note on the Berry--Esseen bounds for $\rho$-mixing random variables and their application. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 519-540. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/