Mots-clés : sample quantiles.
@article{TVP_2022_67_3_a5,
author = {C. Lu and W. Yu and R. L. Ji and H. L. Zhou and X. J. Wang},
title = {A~note on the {Berry{\textendash}Esseen} bounds for $\rho$-mixing random variables and their application},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {519--540},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/}
}
TY - JOUR AU - C. Lu AU - W. Yu AU - R. L. Ji AU - H. L. Zhou AU - X. J. Wang TI - A note on the Berry–Esseen bounds for $\rho$-mixing random variables and their application JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 519 EP - 540 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/ LA - ru ID - TVP_2022_67_3_a5 ER -
%0 Journal Article %A C. Lu %A W. Yu %A R. L. Ji %A H. L. Zhou %A X. J. Wang %T A note on the Berry–Esseen bounds for $\rho$-mixing random variables and their application %J Teoriâ veroâtnostej i ee primeneniâ %D 2022 %P 519-540 %V 67 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/ %G ru %F TVP_2022_67_3_a5
C. Lu; W. Yu; R. L. Ji; H. L. Zhou; X. J. Wang. A note on the Berry–Esseen bounds for $\rho$-mixing random variables and their application. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 519-540. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a5/
[1] R. C. Bradley, “A stationary rho-mixing Markov chain which is not “interlaced” rho-mixing”, J. Theoret. Probab., 14:3 (2001), 717–727 | DOI | MR | Zbl
[2] M. N. Chang, P. V. Rao, “Berry–Esseen bound for the Kaplan–Meier estimator”, Comm. Statist. Theory Methods, 18:12 (1989), 4647–4664 | DOI | MR | Zbl
[3] Yong-Kab Choi, Soo Hak Sung, Hee-Jin Moon, “Self-normalized limit theorems for linear processes generated by $\rho$-mixing innovations”, Lith. Math. J., 57:1 (2017), 13–29 | DOI | MR | Zbl
[4] Xin Deng, Xuejun Wang, Yi Wu, “The Berry–Esseen type bounds of the weighted estimator in a nonparametric model with linear process errors”, Statist. Papers, 62:2 (2021), 963–984 | DOI | MR | Zbl
[5] V. F. Gaposhkin, “Moment estimates for integrals of $\rho$-mixing random fields”, Russian Math. Surveys, 43:5 (1988), 223–224 | DOI | MR | Zbl
[6] I. A. Ibragimov, “Some limit theorems for stationary processes”, Theory Probab. Appl., 7:4 (1962), 349–382 | DOI | MR | Zbl
[7] A. N. Kolmogorov, Y. A. Rozanov, “On strong mixing conditions for stationary Gaussian processes”, Theory Probab. Appl., 5:2 (1960), 204–208 | DOI | MR | Zbl
[8] Tingting Liu, Zhimian Zhang, Shuhe Hu, Wenzhi Yang, “The Berry–Esséen bound of sample quantiles for NA sequence”, J. Inequal. Appl., 2014 (2014), 79, 7 pp. | DOI | MR | Zbl
[9] M. Peligrad, Qi Man Shao, “Estimation of the variance of partial sums for $\rho$-mixing random variables”, J. Multivariate Anal., 52:1 (1995), 140–157 | DOI | MR | Zbl
[10] V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp. | MR | Zbl
[11] R. D. Reiss, “On the accuracy of the normal approximation for quantiles”, Ann. Probab., 2:4 (1974), 741–744 | DOI | MR | Zbl
[12] R. J. Serfling, Approximation theorems of mathematical statistics, Wiley Ser. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1980, xiv+371 pp. | DOI | MR | Zbl
[13] Qiman Shao, “Exponential inequalities for dependent random variables”, Acta Math. Appl. Sinica (English Ser.), 6:4 (1990), 338–350 | DOI | MR | Zbl
[14] Qi-Man Shao, “Maximal inequalities for partial sums of $\rho$-mixing sequences”, Ann. Probab., 23:2 (1995), 948–965 | DOI | MR | Zbl
[15] X. J. Wang, S. H. Hu, “The Berry–Esseen bound for $\rho$-mixing random variables and its applications in nonparametric regression model”, Teoriya veroyatn. i ee primen., 63:3 (2018), 584–608 ; Theory Probab. Appl., 63:3 (2019), 479–499 | DOI | MR | Zbl | DOI
[16] Wenzhi Yang, Xuejun Wang, Shuhe Hu, “A note on the Berry–Esséen bound of sample quantiles for $\varphi$-mixing sequence”, Comm. Statist. Theory Methods, 43:19 (2014), 4187–4194 | DOI | MR | Zbl
[17] Wenzhi Yang, Xuejun Wang, Xiaoqin Li, Shuhe Hu, “Berry–Esséen bound of sample quantiles for $\varphi$-mixing random variables”, J. Math. Anal. Appl., 388:1 (2012), 451–462 | DOI | MR | Zbl
[18] Qinchi Zhang, Wenzhi Yang, Shuhe Hu, “On Bahadur representation for sample quantiles under $\alpha$-mixing sequence”, Statist. Papers, 55:2 (2014), 285–299 | DOI | MR | Zbl