A~Gibbs conditional theorem under extreme deviation
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 489-518
Voir la notice de l'article provenant de la source Math-Net.Ru
We explore some properties of the conditional distribution of an
independently and identically distributed (i.i.d.) sample under large
exceedances of its sum. Thresholds for the asymptotic independence of the
summands are observed, in contrast with the classical case when the
conditioning event is in the range of a large deviation. This paper is an
extension of Broniatowski and Cao [Extremes, 17 (2014), pp. 305–336].
Tools include a new Edgeworth expansion adapted to specific triangular arrays,
where the rows are generated by tilted distribution with diverging
parameters, and some Abelian type results.
Keywords:
Gibbs conditional principle, extreme deviation.
@article{TVP_2022_67_3_a4,
author = {M. Biret and M. Broniatowski and Z. Cao},
title = {A~Gibbs conditional theorem under extreme deviation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {489--518},
publisher = {mathdoc},
volume = {67},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a4/}
}
TY - JOUR AU - M. Biret AU - M. Broniatowski AU - Z. Cao TI - A~Gibbs conditional theorem under extreme deviation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 489 EP - 518 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a4/ LA - ru ID - TVP_2022_67_3_a4 ER -
M. Biret; M. Broniatowski; Z. Cao. A~Gibbs conditional theorem under extreme deviation. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 489-518. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a4/