@article{TVP_2022_67_3_a4,
author = {M. Biret and M. Broniatowski and Z. Cao},
title = {A~Gibbs conditional theorem under extreme deviation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {489--518},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a4/}
}
M. Biret; M. Broniatowski; Z. Cao. A Gibbs conditional theorem under extreme deviation. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 489-518. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a4/
[1] A. A. Balkema, C. Klüppelberg, S. I. Resnick, “Densities with Gaussian tails”, Proc. London Math. Soc. (3), 66:3 (1993), 568–588 | DOI | MR | Zbl
[2] S. K. Bar-Lev, D. Bshouty, P. Enis, “On polynomial variance functions”, Probab. Theory Related Fields, 94:1 (1992), 69–82 | DOI | MR | Zbl
[3] O. Barndorff-Nielsen, Information and exponential families in statistical theory, Wiley Ser. Probab. Math. Statist., John Wiley Sons, Ltd., Chichester, 1978, ix+238 pp. | DOI | MR | Zbl
[4] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl
[5] M. Biret, M. Broniatowski, Zansheng Cao, “A sharp Abelian theorem for the Laplace transform”, Mathematical statistics and limit theorems, Springer, Cham, 2015, 67–92 | DOI | MR | Zbl
[6] M. Broniatowski, A. Fuchs, “Tauberian theorems, Chernoff inequality, and the tail behavior of finite convolutions of distribution functions”, Adv. Math., 116:1 (1995), 12–33 | DOI | MR | Zbl
[7] M. Broniatowski, Zhansheng Cao, “Light tails: all summands are large when the empirical mean is large”, Extremes, 17:2 (2014), 305–336 | DOI | MR | Zbl
[8] M. Broniatowski, V. Caron, “Long runs under a conditional limit distribution”, Ann. Appl. Probab., 24:6 (2014), 2246–2296 | DOI | MR | Zbl
[9] I. Csiszár, “Sanov property, generalized $I$-projection and a conditional limit theorem”, Ann. Probab., 12:3 (1984), 768–793 | DOI | MR | Zbl
[10] A. Dembo, O. Zeitouni, “Refinements of the Gibbs conditioning principle”, Probab. Theory Related Fields, 104:1 (1996), 1–14 | DOI | MR | Zbl
[11] P. Diaconis, D. A. Freedman, “Conditional limit theorems for exponential families and finite versions of de Finetti's theorem”, J. Theoret. Probab., 1:4 (1988), 381–410 | DOI | MR | Zbl
[12] W. Feller, An introduction to probability theory and its applications, v. 2, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl
[13] U. Frisch, D. Sornette, “Extreme deviations and applications”, J. Physique I, 7:9 (1997), 1155–1171 | DOI
[14] J. L. Jensen, Saddlepoint approximations, Oxford Statist. Sci. Ser., 16, Oxford Univ. Press, New York, 1995, xii+332 pp. | MR | Zbl
[15] B. Jørgensen, J. R. Martínez, “Tauber theory for infinitely divisible variance functions”, Bernoulli, 3:2 (1997), 213–224 | DOI | MR | Zbl
[16] D. Juszczak, A. V. Nagaev, “Local large deviation theorem for sums of i.i.d. random vectors when the Cramér condition holds in the whole space”, Probab. Math. Statist., 24:2 (2004), 297–320 | MR | Zbl
[17] G. Letac, M. Mora, “Natural real exponential families with cubic variance functions”, Ann. Statist., 18:1 (1990), 1–37 | DOI | MR | Zbl
[18] D. Sornette, Critical phenomena in natural sciences. Chaos, fractals, selforganization and disorder: concepts and tools, Springer Ser. Synergetics, 2nd print. of the 2nd ed., Springer-Verlag, Berlin, 2006, xxii+528 pp. | DOI | MR | Zbl