Keywords: the Marchenko–Pastur law.
@article{TVP_2022_67_3_a3,
author = {P. A. Yaskov},
title = {Limiting spectral distribution for large sample covariance matrices with graph-dependent elements},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {471--488},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a3/}
}
TY - JOUR AU - P. A. Yaskov TI - Limiting spectral distribution for large sample covariance matrices with graph-dependent elements JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 471 EP - 488 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a3/ LA - ru ID - TVP_2022_67_3_a3 ER -
P. A. Yaskov. Limiting spectral distribution for large sample covariance matrices with graph-dependent elements. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 471-488. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a3/
[1] R. Adamczak, “On the Marchenko–Pastur and circular laws for some classes of random matrices with dependent entries”, Electron. J. Probab., 16:37 (2011), 1065–1095 | DOI | MR | Zbl
[2] Zhidong Bai, Wang Zhou, “Large sample covariance matrices without independence structures in columns”, Statist. Sinica, 18:2 (2008), 425–442 | MR | Zbl
[3] Zhidong Bai, J. W. Silverstein, Spectral analysis of large dimensional random matrices, Springer Ser. Statist., 2nd ed., Springer, New York, 2010, xvi+551 pp. | DOI | MR | Zbl
[4] M. Banna, F. Merlevéde, M. Peligrad, “On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries”, Stochastic Process. Appl., 125:7 (2015), 2700–2726 | DOI | MR | Zbl
[5] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007, xviii+500 pp. | DOI | MR | Zbl
[6] J. Bun, J.-P. Bouchaud, M. Potters, “Cleaning large correlation matrices: tools from random matrix theory”, Phys. Rep., 666 (2017), 1–109 | DOI | MR | Zbl
[7] J. Bryson, R. Vershynin, Hongkai Zhao, “Marchenko–Pastur law with relaxed independence conditions”, Random Matrices Theory Appl., 10:4 (2021), 2150040, 28 pp. | DOI | MR
[8] V. L. Girko, A. K. Gupta, “Asymptotic behavior of spectral function of empirical covariance matrices”, Random Oper. Stochastic Equations, 2:1 (1994), 43–60 | DOI | MR | Zbl
[9] E. Dobriban, S. Wager, “High-dimensional asymptotics of prediction: ridge regression and classification”, Ann. Statist., 46:1 (2018), 247–279 | DOI | MR | Zbl
[10] F. Götze, A. A. Naumov, A. N. Tikhomirov, “Limit theorems for two classes of random matrices with dependent entries”, Theory Probab. Appl., 59:1 (2015), 23–39 | DOI | DOI | MR | Zbl
[11] P. Hall, “On the $L^p$ convergence of sums of independent random variables”, Math. Proc. Cambridge Philos. Soc., 82:3 (1977), 439–446 | DOI | MR | Zbl
[12] Jun Hui, Guangming Pan, “Limiting spectral distribution for large sample covariance matrices with $m$-dependent elements”, Comm. Statist. Theory Methods, 39:6 (2010), 935–941 | DOI | MR | Zbl
[13] S. Janson, “Large deviations for sums of partly dependent random variables”, Random Structures Algorithms, 24:3 (2004), 234–248 | DOI | MR | Zbl
[14] N. El Karoui, “Random matrices and high-dimensional statistics: beyond covariance matrices”, Proceedings of the international congress of mathematicians (ICM 2018) (Rio de Janeiro, 2018), v. 4, World Sci. Publ., Hackensack, NJ, 2018, 2857–2876 | DOI | MR | Zbl
[15] N. El Karoui, “Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond”, Ann. Appl. Probab., 19:6 (2009), 2362–2405 | DOI | MR | Zbl
[16] A. Lytova, “Central limit theorem for linear eigenvalue statistics for a tensor product version of sample covariance matrices”, J. Theoret. Probab., 31:2 (2018), 1024–1057 | DOI | MR | Zbl
[17] J. R. Magnus, “The moments of products of quadratic forms in normal variables”, Statist. Neerlandica, 32:4 (1978), 201–210 | DOI | MR | Zbl
[18] V. A. Marčenko, L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices”, Math. USSR-Sb., 1:4 (1967), 457–483 | DOI | MR | Zbl
[19] F. Merlevède, M. Peligrad, “On the empirical spectral distribution for matrices with long memory and independent rows”, Stochastic Process. Appl., 126:9 (2016), 2734–2760 | DOI | MR | Zbl
[20] F. Merlevede, C. Peligrad, M. Peligrad, “On the universality of spectral limit for random matrices with martingale differences entries”, Random Matrices Theory Appl., 4:1 (2015), 1550003, 33 pp. | DOI | MR | Zbl
[21] S. O'Rourke, “A note on the Marchenko–Pastur law for a class of random matrices with dependent entries”, Electron. Commun. Probab., 17 (2012), 28, 13 pp. | DOI | MR | Zbl
[22] A. Pajor, L. Pastur, “On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution”, Studia Math., 195:1 (2009), 11–29 | DOI | MR | Zbl
[23] L. Pastur, M. Shcherbina, Eigenvalue distribution of large random matrices, Math. Surveys Monogr., 171, Amer. Math. Soc., Providence, RI, 2011, xiv+632 pp. | DOI | MR | Zbl
[24] V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp. | MR | Zbl
[25] Meng Wei, Guangyu Yang, Lingling Ying, “The limiting spectral distribution for large sample covariance matrices with unbounded $m$-dependent entries”, Comm. Statist. Theory Methods, 45:22 (2016), 6651–6662 | DOI | MR | Zbl
[26] Jianfeng Yao, “A note on a Marčenko–Pastur type theorem for time series”, Statist. Probab. Lett., 82:1 (2012), 22–28 | DOI | MR | Zbl
[27] P. Yaskov, The universality principle for spectral distributions of sample covariance matrices, 2014, 71 pp., arXiv: 1410.5190
[28] P. Yaskov, “Variance inequalities for quadratic forms with applications”, Math. Methods Statist., 24:4 (2015), 309–319 | DOI | MR | Zbl
[29] P. Yaskov, “Necessary and sufficient conditions for the Marchenko–Pastur theorem”, Electron. Commun. Probab., 21 (2016), 73, 8 pp. | DOI | MR | Zbl
[30] P. Yaskov, “LLN for quadratic forms of long memory time series and its applications in random matrix theory”, J. Theoret. Probab., 31:4 (2018), 2032–2055 | DOI | MR | Zbl
[31] Rui Ray Zhang, Xingwu Liu, Yuyi Wang, Liwei Wang, “McDiarmid-type inequalities for graph-dependent variables and stability bounds”, Advances in neural information processing systems 32 (NeurIPS 2019) (Vancouver, BC, 2019), MIT Press, Cambridge, MA, 2019, 10889–10899