Limiting spectral distribution for large sample covariance matrices with graph-dependent elements
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 471-488
Voir la notice de l'article provenant de la source Math-Net.Ru
For sample covariance matrices associated with random vectors having
graph dependent entries and a number of dimensions growing with
the sample size, we derive sharp conditions for the limiting spectrum of the
matrices to have the same form as in the case of Gaussian data with similar
covariance structure. Our results are tight. In particular, they give necessary
and sufficient conditions for the Marchenko–Pastur theorem for sample
covariance matrices associated with random vectors having $m$-dependent
orthonormal elements when $m=o(n)$.
Mots-clés :
random matrices, covariance matrices
Keywords: the Marchenko–Pastur law.
Keywords: the Marchenko–Pastur law.
@article{TVP_2022_67_3_a3,
author = {P. A. Yaskov},
title = {Limiting spectral distribution for large sample covariance matrices with graph-dependent elements},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {471--488},
publisher = {mathdoc},
volume = {67},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a3/}
}
TY - JOUR AU - P. A. Yaskov TI - Limiting spectral distribution for large sample covariance matrices with graph-dependent elements JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 471 EP - 488 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a3/ LA - ru ID - TVP_2022_67_3_a3 ER -
P. A. Yaskov. Limiting spectral distribution for large sample covariance matrices with graph-dependent elements. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 471-488. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a3/