@article{TVP_2022_67_3_a2,
author = {L. V. Rozovskii},
title = {Large deviations of a~sum of independent random variables with distributions with rapidly decreasing tails},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {456--470},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a2/}
}
TY - JOUR AU - L. V. Rozovskii TI - Large deviations of a sum of independent random variables with distributions with rapidly decreasing tails JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 456 EP - 470 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a2/ LA - ru ID - TVP_2022_67_3_a2 ER -
L. V. Rozovskii. Large deviations of a sum of independent random variables with distributions with rapidly decreasing tails. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 456-470. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a2/
[1] A. A. Borovkov, Asymptotic analysis of random walks. Light-tailed distributions, Encyclopedia Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020, xvi+420 pp. | DOI | MR | Zbl | Zbl
[2] A. A. Borovkov, A. A. Mogulskii, “On large and superlarge deviations of sums of independent random vectors under Cramér's condition. II”, Theory Probab. Appl., 51:4 (2007), 567–594 | DOI | DOI | MR | Zbl
[3] S. V. Nagaev, “Large deviations of sums of independent random variables”, Ann. Probab., 7:5 (1979), 745–789 | DOI | MR | Zbl
[4] D. B. H. Cline, “Convolution tails, product tails and domains of attraction”, Probab. Theory Related Fields, 72:4 (1986), 529–557 | DOI | MR | Zbl
[5] L. V. Rozovsky, “Superlarge deviations of a sum of independent random variables having a common absolutely continuous distribution under the Cramer condition”, Theory Probab. Appl., 48:1 (2004), 108–130 | DOI | DOI | MR | Zbl
[6] A. A. Borovkov, Probability theory, Gordon and Breach Science Publishers, Amsterdam, 1998, x+474 pp. | MR | Zbl | Zbl
[7] A. G. Pakes, “Convolution equivalence and infinite divisibility”, J. Appl. Probab., 41:2 (2004), 407–424 | DOI | MR | Zbl
[8] S. Zachary, S. G. Foss, “On the exact distributional asymptotics for the supremum of a random walk with increments in a class of light-tailed distributions”, Siberian Math. J., 47:6 (2006), 1034–1041 | DOI | MR | Zbl
[9] S. G. Foss, “On the exact asymptotics for the stationary sojourn time distribution in a tandem of queues with light-tailed service times”, Problems Inform. Transmission, 43:4 (2007), 353–366 | DOI | MR | Zbl
[10] T. Watanabe, “Convolution equivalence and distributions of random sums”, Probab. Theory Related Fields, 142:3-4 (2008), 367–397 | DOI | MR | Zbl
[11] L. V. Rozovsky, “On large deviations of a sum of independent random variables with rapidly decreasing distribution tails”, Dokl. Math., 101:2 (2020), 150–153 | DOI | DOI | Zbl