Exact lower and upper bounds for Gaussian measures
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 607-617

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact upper and lower bounds on the ratio $\operatorname{\mathbf{E}}w(\mathbf{X}-\mathbf{v})/\operatorname{\mathbf{E}}w(\mathbf{X})$ for a centered Gaussian random vector $\mathbf{X}$ in $\mathbf{R}^n$ are obtained, as well as bounds on the rate of change of $\operatorname{\mathbf{E}}w(\mathbf{X}-t\mathbf{v})$ in $t$, where $w\colon\mathbf{R}^n\to[0,\infty)$ is any even unimodal function and $\mathbf{v}$ is any vector in $\mathbf{R}^n$. As a corollary of such results, exact upper and lower bounds on the power function of statistical tests for the mean of a multivariate normal distribution are given.
Keywords: Gaussian measures, multivariate normal distribution, shifts, unimodality, logconcavity, monotonicity, exact bounds, tests for the mean.
@article{TVP_2022_67_3_a11,
     author = {I. Pinelis},
     title = {Exact lower and upper bounds for {Gaussian} measures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {607--617},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a11/}
}
TY  - JOUR
AU  - I. Pinelis
TI  - Exact lower and upper bounds for Gaussian measures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 607
EP  - 617
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a11/
LA  - ru
ID  - TVP_2022_67_3_a11
ER  - 
%0 Journal Article
%A I. Pinelis
%T Exact lower and upper bounds for Gaussian measures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 607-617
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a11/
%G ru
%F TVP_2022_67_3_a11
I. Pinelis. Exact lower and upper bounds for Gaussian measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 607-617. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a11/