@article{TVP_2022_67_3_a11,
author = {I. Pinelis},
title = {Exact lower and upper bounds for {Gaussian} measures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {607--617},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a11/}
}
I. Pinelis. Exact lower and upper bounds for Gaussian measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 607-617. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a11/
[1] T. W. Anderson, “The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities”, Proc. Amer. Math. Soc., 6:2 (1955), 170–176 | DOI | MR | Zbl
[2] H. J. Brascamp, E. H. Lieb, “On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR | Zbl
[3] G. B. Folland, Real analysis. Modern techniques and their applications, Pure Appl. Math. (N. Y.), John Wiley Sons, Inc., New York, 1984, xiv+350 pp. | MR | Zbl
[4] R. J. Gardner, “The Brunn–Minkowski inequality”, Bull. Amer. Math. Soc. (N.S.), 39:3 (2002), 355–405 | DOI | MR | Zbl
[5] A. W. Marshall, I. Olkin, “Majorization in multivariate distributions”, Ann. Statist., 2:6 (1974), 1189–1200 | DOI | MR | Zbl
[6] I. Pinelis, “On l'Hospital-type rules for monotonicity”, JIPAM. J. Inequal. Pure Appl. Math., 7:2 (2006), 40, 19 pp. | MR | Zbl
[7] I. Pinelis, “Schur${}^2$-concavity properties of Gaussian measures, with applications to hypotheses testing”, J. Multivariate Anal., 124 (2014), 384–397 | DOI | MR | Zbl
[8] R. T. Rockafellar, Convex analysis, Princeton Landmarks Math., Reprint of the 1970 original, Princeton Univ. Press, Princeton, NJ, 1997, xviii+451 pp. | MR | Zbl | Zbl