@article{TVP_2022_67_3_a10,
author = {S. Mousavinasr and C. R. Gon\c{c}alves and C. C. Y. Dorea},
title = {Mallows distance convergence for extremes: regeneration approach},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {597--606},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/}
}
TY - JOUR AU - S. Mousavinasr AU - C. R. Gonçalves AU - C. C. Y. Dorea TI - Mallows distance convergence for extremes: regeneration approach JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 597 EP - 606 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/ LA - ru ID - TVP_2022_67_3_a10 ER -
S. Mousavinasr; C. R. Gonçalves; C. C. Y. Dorea. Mallows distance convergence for extremes: regeneration approach. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 597-606. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/
[1] E. G. Barbosa, C. C. Y. Dorea, “Convergence to stable laws in Mallows distance for mixing sequences of random variables”, Braz. J. Probab. Stat., 24:2 (2010), 128–136 | DOI | MR | Zbl
[2] P. J. Bickel, D. A. Freedman, “Some asymptotic theory for the bootstrap”, Ann. Statist., 9:6 (1981), 1196–1217 | DOI | MR | Zbl
[3] E. del Barrio, E. Giné, F. Utzet, “Asymptotics for $L_2$ functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distance measure”, Bernoulli, 11:1 (2005), 131–189 | DOI | MR | Zbl
[4] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl
[5] C. C. Y. Dorea, D. B. Ferreira, “Conditions for equivalence between Mallows distance and convergence to stable laws”, Acta Math. Hungar., 134:1-2 (2012), 1–11 | DOI | MR | Zbl
[6] C. C. Y. Dorea, M. A. Oliveira, “The Donsker's theorem for Lévy stable motions via Mallows distance”, Markov Process. Related Fields, 20:1 (2014), 167–172 | MR | Zbl
[7] O. Johnson, R. Samworth, “Central limit theorem and convergence to stable laws in Mallows distance”, Bernoulli, 11:5 (2005), 829–845 | DOI | MR | Zbl
[8] C. L. Mallows, “A note on asymptotic joint normality”, Ann. Math. Statist., 43:2 (1972), 508–515 | DOI | MR | Zbl
[9] S. Mousavinasr, C. R. Gonçalves, C. C. Y. Dorea, “Convergence to Fréchet distribution via Mallows distance”, Statist. Probab. Lett., 163 (2020), 108776, 6 pp. | DOI | MR | Zbl
[10] J. Pickands III, “Moment convergence of sample extremes”, Ann. Math. Statist., 39 (1968), 881–889 | DOI | MR | Zbl
[11] S. I. Resnick, Extreme values, regular variation and point processes, Springer Ser. Oper. Res. Financ. Eng., Reprint of the 1987 original, Springer, New York, 2008, xiv+320 pp. | MR | Zbl
[12] H. Rootzén, “Maxima and exceedances of stationary Markov chains”, Adv. in Appl. Probab., 20:2 (1988), 371–390 | DOI | MR | Zbl