Mallows distance convergence for extremes: regeneration approach
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 597-606

Voir la notice de l'article provenant de la source Math-Net.Ru

We explore the Mallows distance convergence to characterize the domain of attraction for extreme value distributions. Under mild assumptions we derive the necessary and sufficient conditions. In addition to the i.i.d. case, our results apply to regenerative processes.
Keywords: Mallows distance, extreme distributions, regenerative processes.
@article{TVP_2022_67_3_a10,
     author = {S. Mousavinasr and C. R. Gon\c{c}alves and C. C. Y. Dorea},
     title = {Mallows distance convergence for extremes: regeneration approach},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {597--606},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/}
}
TY  - JOUR
AU  - S. Mousavinasr
AU  - C. R. Gonçalves
AU  - C. C. Y. Dorea
TI  - Mallows distance convergence for extremes: regeneration approach
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 597
EP  - 606
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/
LA  - ru
ID  - TVP_2022_67_3_a10
ER  - 
%0 Journal Article
%A S. Mousavinasr
%A C. R. Gonçalves
%A C. C. Y. Dorea
%T Mallows distance convergence for extremes: regeneration approach
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 597-606
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/
%G ru
%F TVP_2022_67_3_a10
S. Mousavinasr; C. R. Gonçalves; C. C. Y. Dorea. Mallows distance convergence for extremes: regeneration approach. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 597-606. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/