Mallows distance convergence for extremes: regeneration approach
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 597-606 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We explore the Mallows distance convergence to characterize the domain of attraction for extreme value distributions. Under mild assumptions we derive the necessary and sufficient conditions. In addition to the i.i.d. case, our results apply to regenerative processes.
Keywords: Mallows distance, extreme distributions, regenerative processes.
@article{TVP_2022_67_3_a10,
     author = {S. Mousavinasr and C. R. Gon\c{c}alves and C. C. Y. Dorea},
     title = {Mallows distance convergence for extremes: regeneration approach},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {597--606},
     year = {2022},
     volume = {67},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/}
}
TY  - JOUR
AU  - S. Mousavinasr
AU  - C. R. Gonçalves
AU  - C. C. Y. Dorea
TI  - Mallows distance convergence for extremes: regeneration approach
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 597
EP  - 606
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/
LA  - ru
ID  - TVP_2022_67_3_a10
ER  - 
%0 Journal Article
%A S. Mousavinasr
%A C. R. Gonçalves
%A C. C. Y. Dorea
%T Mallows distance convergence for extremes: regeneration approach
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 597-606
%V 67
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/
%G ru
%F TVP_2022_67_3_a10
S. Mousavinasr; C. R. Gonçalves; C. C. Y. Dorea. Mallows distance convergence for extremes: regeneration approach. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 597-606. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a10/

[1] E. G. Barbosa, C. C. Y. Dorea, “Convergence to stable laws in Mallows distance for mixing sequences of random variables”, Braz. J. Probab. Stat., 24:2 (2010), 128–136 | DOI | MR | Zbl

[2] P. J. Bickel, D. A. Freedman, “Some asymptotic theory for the bootstrap”, Ann. Statist., 9:6 (1981), 1196–1217 | DOI | MR | Zbl

[3] E. del Barrio, E. Giné, F. Utzet, “Asymptotics for $L_2$ functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distance measure”, Bernoulli, 11:1 (2005), 131–189 | DOI | MR | Zbl

[4] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl

[5] C. C. Y. Dorea, D. B. Ferreira, “Conditions for equivalence between Mallows distance and convergence to stable laws”, Acta Math. Hungar., 134:1-2 (2012), 1–11 | DOI | MR | Zbl

[6] C. C. Y. Dorea, M. A. Oliveira, “The Donsker's theorem for Lévy stable motions via Mallows distance”, Markov Process. Related Fields, 20:1 (2014), 167–172 | MR | Zbl

[7] O. Johnson, R. Samworth, “Central limit theorem and convergence to stable laws in Mallows distance”, Bernoulli, 11:5 (2005), 829–845 | DOI | MR | Zbl

[8] C. L. Mallows, “A note on asymptotic joint normality”, Ann. Math. Statist., 43:2 (1972), 508–515 | DOI | MR | Zbl

[9] S. Mousavinasr, C. R. Gonçalves, C. C. Y. Dorea, “Convergence to Fréchet distribution via Mallows distance”, Statist. Probab. Lett., 163 (2020), 108776, 6 pp. | DOI | MR | Zbl

[10] J. Pickands III, “Moment convergence of sample extremes”, Ann. Math. Statist., 39 (1968), 881–889 | DOI | MR | Zbl

[11] S. I. Resnick, Extreme values, regular variation and point processes, Springer Ser. Oper. Res. Financ. Eng., Reprint of the 1987 original, Springer, New York, 2008, xiv+320 pp. | MR | Zbl

[12] H. Rootzén, “Maxima and exceedances of stationary Markov chains”, Adv. in Appl. Probab., 20:2 (1988), 371–390 | DOI | MR | Zbl