@article{TVP_2022_67_3_a1,
author = {D. M. Balashova},
title = {Clustering effect for multitype branching random walk},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {443--455},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a1/}
}
D. M. Balashova. Clustering effect for multitype branching random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 443-455. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a1/
[1] D. Balashova, S. Molchanov, E. Yarovaya, “Structure of the particle population for a branching random walk with a critical reproduction law”, Methodol. Comput. Appl. Probab., 23:1 (2021), 85–102 | DOI | MR | Zbl
[2] I. Makarova, D. Balashova, S. Molchanov, E. Yarovaya, “Branching random walks with two types of particles on multidimensional lattices”, Mathematics, 10:6 (2022), 867, 45 pp. | DOI
[3] S. A. Molchanov, E. B. Yarovaya, “Large deviations for a symmetric branching random walk on a multidimensional lattice”, Proc. Steklov Inst. Math., 282 (2013), 186–201 | DOI | MR | Zbl
[4] D. M. Balashova, E. B. Yarovaya, “Structure of the population of particles for a branching random walk in a homogeneous environment”, Proc. Steklov Inst. Math., 316 (2022), 57–71 | DOI | DOI | Zbl
[5] I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, v. II, Grundlehren Math. Wiss., 218, Springer-Verlag, New York–Heidelberg, 1975, vii+441 pp. | MR | MR | Zbl | Zbl
[6] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl
[7] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekh.-matem. f-te MGU, M., 2007, 104 pp.