Mots-clés : stable distributions.
@article{TVP_2022_67_3_a0,
author = {I. A. Alekseev},
title = {Stable random variables with complex stability {index,~I}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {421--442},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a0/}
}
I. A. Alekseev. Stable random variables with complex stability index, I. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 421-442. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a0/
[1] I. A. Alekseev, “Ustoichivye sluchainye velichiny s kompleksnym indeksom ustoichivosti $\alpha$. Sluchai $|\alpha-1/2|1/2$”, Veroyatnost i statistika. 31, Zap. nauch. sem. POMI, 505, POMI, SPb., 2021, 17–37 | MR
[2] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl
[3] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl
[4] P. R. Halmos, Measure theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950, xi+304 pp. | MR | MR | Zbl
[5] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl
[6] J. F. C. Kingman, Poisson processes, Oxford Stud. Probab., 3, The Clarendon Press, Oxford Univ. Press, New York, 1993, viii+104 pp. | MR | Zbl
[7] M. A. Lifshits, “Invariant measures generated by random fields with independent values”, Funct. Anal. Appl., 19:4 (1985), 329–330 | DOI | MR | Zbl
[8] M. M. Meerschaert, H.-P. Scheffler, Limit distributions for sums of independent random vectors. Heavy tails in theory and practice, Wiley Ser. Probab. Statist. Probab. Statist., John Wiley Sons, Inc., New York, 2001, xvi+484 pp. | MR | Zbl
[9] M. V. Platonova, “Symmetric $\alpha$-stable distributions with noninteger $\alpha>2$ and associated stochastic processes”, J. Math. Sci. (N.Y.), 225:5 (2017), 791–801 | DOI | MR | Zbl
[10] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math., 68, 2nd rev. ed., Cambridge Univ. Press, Cambridge, 2013, xiv+521 pp. | MR | Zbl
[11] M. Sharpe, “Operator-stable probability distributions on vector groups”, Trans. Amer. Math. Soc., 136 (1969), 51–65 | DOI | MR | Zbl
[12] A. V. Skorokhod, Random processes with independent increments, Math. Appl. (Soviet Ser.), 47, Kluwer Acad. Publ., Dordrecht, 1991, xii+279 pp. | MR | MR | Zbl | Zbl
[13] N. V. Smorodina, M. M. Faddeev, “Theorems on convergence of stochastic integrals distributions to signed measures and local limit theorems for large deviations”, J. Math. Sci. (N.Y.), 167:4 (2010), 550–565 | DOI | MR | Zbl
[14] N. V. Smorodina, M. M. Faddeev, “The Levy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110 (2010), 1289–1308 | DOI | MR | Zbl
[15] A. M. Vershik, I. M. Gel'fand, M. I. Graev, “A commutative model of representation of the group of flows $\operatorname{SL}(2,\mathbb{R})^X$ that is connected with a unipotent subgroup”, Funct. Anal. Appl., 17:2 (1983), 137–139 | DOI | MR | Zbl
[16] V. M. Zolotarev, One-dimensional stable distributions, Transl. Math. Monogr., 65, Amer. Math. Soc., Providence, RI, 1986, x+284 pp. | DOI | MR | MR | Zbl | Zbl