Stable random variables with complex stability index,~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 421-442

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is the first part of a work on stable distributions with a complex stability index. We construct complex-valued random variables (r.v.'s) satisfying the usual stability condition but for a complex parameter $\alpha$ such that $|\alpha-1|1$. We find the characteristic functions (ch.f.'s) of the r.v.'s thus obtained and prove that their distributions are infinitely divisible. It is also shown that the stability condition characterizes this class of stable r.v.'s.
Keywords: infinitely divisible distributions, operator-stable laws
Mots-clés : stable distributions.
@article{TVP_2022_67_3_a0,
     author = {I. A. Alekseev},
     title = {Stable random variables with complex stability {index,~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {421--442},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a0/}
}
TY  - JOUR
AU  - I. A. Alekseev
TI  - Stable random variables with complex stability index,~I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 421
EP  - 442
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a0/
LA  - ru
ID  - TVP_2022_67_3_a0
ER  - 
%0 Journal Article
%A I. A. Alekseev
%T Stable random variables with complex stability index,~I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 421-442
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a0/
%G ru
%F TVP_2022_67_3_a0
I. A. Alekseev. Stable random variables with complex stability index,~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 421-442. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a0/