Stable random variables with complex stability index, I
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 421-442 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is the first part of a work on stable distributions with a complex stability index. We construct complex-valued random variables (r.v.'s) satisfying the usual stability condition but for a complex parameter $\alpha$ such that $|\alpha-1|<1$. We find the characteristic functions (ch.f.'s) of the r.v.'s thus obtained and prove that their distributions are infinitely divisible. It is also shown that the stability condition characterizes this class of stable r.v.'s.
Keywords: infinitely divisible distributions, operator-stable laws
Mots-clés : stable distributions.
@article{TVP_2022_67_3_a0,
     author = {I. A. Alekseev},
     title = {Stable random variables with complex stability {index,~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {421--442},
     year = {2022},
     volume = {67},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a0/}
}
TY  - JOUR
AU  - I. A. Alekseev
TI  - Stable random variables with complex stability index, I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 421
EP  - 442
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a0/
LA  - ru
ID  - TVP_2022_67_3_a0
ER  - 
%0 Journal Article
%A I. A. Alekseev
%T Stable random variables with complex stability index, I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 421-442
%V 67
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a0/
%G ru
%F TVP_2022_67_3_a0
I. A. Alekseev. Stable random variables with complex stability index, I. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 421-442. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a0/

[1] I. A. Alekseev, “Ustoichivye sluchainye velichiny s kompleksnym indeksom ustoichivosti $\alpha$. Sluchai $|\alpha-1/2|1/2$”, Veroyatnost i statistika. 31, Zap. nauch. sem. POMI, 505, POMI, SPb., 2021, 17–37 | MR

[2] F. R. Gantmacher, The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959, x+374 pp., ix+276 pp. | MR | MR | Zbl | Zbl

[3] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl

[4] P. R. Halmos, Measure theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950, xi+304 pp. | MR | MR | Zbl

[5] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl

[6] J. F. C. Kingman, Poisson processes, Oxford Stud. Probab., 3, The Clarendon Press, Oxford Univ. Press, New York, 1993, viii+104 pp. | MR | Zbl

[7] M. A. Lifshits, “Invariant measures generated by random fields with independent values”, Funct. Anal. Appl., 19:4 (1985), 329–330 | DOI | MR | Zbl

[8] M. M. Meerschaert, H.-P. Scheffler, Limit distributions for sums of independent random vectors. Heavy tails in theory and practice, Wiley Ser. Probab. Statist. Probab. Statist., John Wiley Sons, Inc., New York, 2001, xvi+484 pp. | MR | Zbl

[9] M. V. Platonova, “Symmetric $\alpha$-stable distributions with noninteger $\alpha>2$ and associated stochastic processes”, J. Math. Sci. (N.Y.), 225:5 (2017), 791–801 | DOI | MR | Zbl

[10] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math., 68, 2nd rev. ed., Cambridge Univ. Press, Cambridge, 2013, xiv+521 pp. | MR | Zbl

[11] M. Sharpe, “Operator-stable probability distributions on vector groups”, Trans. Amer. Math. Soc., 136 (1969), 51–65 | DOI | MR | Zbl

[12] A. V. Skorokhod, Random processes with independent increments, Math. Appl. (Soviet Ser.), 47, Kluwer Acad. Publ., Dordrecht, 1991, xii+279 pp. | MR | MR | Zbl | Zbl

[13] N. V. Smorodina, M. M. Faddeev, “Theorems on convergence of stochastic integrals distributions to signed measures and local limit theorems for large deviations”, J. Math. Sci. (N.Y.), 167:4 (2010), 550–565 | DOI | MR | Zbl

[14] N. V. Smorodina, M. M. Faddeev, “The Levy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110 (2010), 1289–1308 | DOI | MR | Zbl

[15] A. M. Vershik, I. M. Gel'fand, M. I. Graev, “A commutative model of representation of the group of flows $\operatorname{SL}(2,\mathbb{R})^X$ that is connected with a unipotent subgroup”, Funct. Anal. Appl., 17:2 (1983), 137–139 | DOI | MR | Zbl

[16] V. M. Zolotarev, One-dimensional stable distributions, Transl. Math. Monogr., 65, Amer. Math. Soc., Providence, RI, 1986, x+284 pp. | DOI | MR | MR | Zbl | Zbl