Records and increases of multivariate extremes of random particle scores in supercritical branching processes with max-linear heredity
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 384-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper continues the author's long-term studies on extremes of random particle scores in branching processes. It is assumed that multiplication of particles is described by an immortal supercritical discrete-time branching process, the particle scores are dependent due to general heredity, and this dependence is a function of the degree of their relationship. The case of heavy-tail distributions of scores is considered. The max-linear model for scores formation is used. We evaluate the limit probabilities of the current generation superiority to the previous generation or all previous generations, in terms of maxima of particle scores.
Keywords: branching processes, multivariate extremes, heavy tails, records.
@article{TVP_2022_67_2_a9,
     author = {A. V. Lebedev},
     title = {Records and increases of multivariate extremes of~random particle scores in supercritical branching processes with max-linear heredity},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {384--395},
     year = {2022},
     volume = {67},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a9/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Records and increases of multivariate extremes of random particle scores in supercritical branching processes with max-linear heredity
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 384
EP  - 395
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a9/
LA  - ru
ID  - TVP_2022_67_2_a9
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Records and increases of multivariate extremes of random particle scores in supercritical branching processes with max-linear heredity
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 384-395
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a9/
%G ru
%F TVP_2022_67_2_a9
A. V. Lebedev. Records and increases of multivariate extremes of random particle scores in supercritical branching processes with max-linear heredity. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 384-395. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a9/

[1] M. R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and related properties of random sequences and processes, Springer Ser. Statist., Springer-Verlag, New York–Berlin, 1983, xii+336 pp. | DOI | MR | MR | Zbl | Zbl

[2] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Appl. Math. (N.Y.), 33, Corr. 4th printing, Springer-Verlag, Berlin, 2003, xvi+648 pp. | DOI | MR | Zbl

[3] T. E. Harris, The theory of branching processes, Grundlehren Math. Wiss., 119, Springer-Verlag, Berlin; Prentice-Hall, Inc., 1963, xiv+230 pp. | MR | Zbl

[4] V. A. Vatutin, A. M. Zubkov, “Branching processes. I”, J. Soviet Math., 39:1 (1987), 2431–2475 | DOI | MR | Zbl

[5] B. C. Arnold, J. A. Villaseñor, “The tallest man in the world”, Statistical theory and applications, Papers in honor of H. A. David, Springer, New York, 1996, 81–88 | DOI | MR | Zbl

[6] A. G. Pakes, “Extreme order statistics on Galton–Watson trees”, Metrika, 47:2 (1998), 95–117 ; “Письмо в редакцию”, 107:6 (2020), 954 | DOI | MR | Zbl | DOI | MR | Zbl

[7] A. V. Lebedev, “Multivariate extremes of random scores of particles in branching processes with max-linear heredity”, Math. Notes, 105:3 (2019), 376–384 ; erratum: “Letter to the Editor”, 107:6 (2020), 1016 | DOI | DOI | DOI | DOI | MR | MR | Zbl | Zbl

[8] A. V. Lebedev, “Maxima of random particles scores in Markov branching processes with continuous time”, Extremes, 11:2 (2008), 203–216 | DOI | MR | Zbl

[9] A. V. Lebedev, “Multivariate extremes of random properties of particles in supercritical branching processes”, Theory Probab. Appl., 57:4 (2013), 678–683 | DOI | DOI | MR | Zbl

[10] V. B. Nevzorov, Records: mathematical theory, Transl. Math. Monogr., 194, Amer. Math. Soc., Providence, RI, 2001, x+164 pp. | DOI | MR | MR | Zbl | Zbl

[11] E. Hashorva, J. Hüsler, “Multiple maxima in multivariate samples”, Statist. Probab. Lett., 75:1 (2005), 11–17 | DOI | MR | Zbl

[12] C. Dombry, M. Zott, “Multivariate records and hitting scenarios”, Extremes, 21:2 (2018), 343–361 | DOI | MR | Zbl

[13] R. B. Nelsen, An introduction to copulas, Springer Ser. Statist., 2nd ed., Springer, New York, 2006, xiv+269 pp. | DOI | MR | Zbl

[14] A. J. McNeil, R. Frey, P. Embrechts, Quantitative risk management. Concepts, techniques and tools, Princet. Ser. Finance, Princeton Univ. Press, Princeton, NJ, 2005, xvi+538 pp. | MR | Zbl

[15] Yu. N. Blagoveschenskii, “Osnovnye elementy teorii kopul”, Prikladnaya ekonometrika, 2012, no. 2(26), 113–130

[16] P. Barbe, C. Genest, K. Ghoudi, B. Rémillard, “On Kendall's process”, J. Multivariate Anal., 58:2 (1996), 197–229 | DOI | MR | Zbl

[17] K. Ghoudi, A. Khoudraji, L. Rivest, “Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles”, Canad. J. Statist., 26:1 (1998), 187–197 | DOI | MR | Zbl

[18] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl