Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 365-383

Voir la notice de l'article provenant de la source Math-Net.Ru

This note is devoted to the study of the maximum of the excursion of a random walk with negative drift and light-tailed increments. More precisely, we determine the local asymptotics of the joint distribution of the length, the maximum, and the time at which this maximum is achieved. This result allows one to obtain a local central limit theorem for the length of the excursion conditioned on large values of the maximum.
Keywords: random walk, Cramér–Lundberg, exponential change of measure.
Mots-clés : excursion
@article{TVP_2022_67_2_a8,
     author = {E. Perfilev and V. Wa{\cyrs}htel},
     title = {Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {365--383},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/}
}
TY  - JOUR
AU  - E. Perfilev
AU  - V. Waсhtel
TI  - Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 365
EP  - 383
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/
LA  - en
ID  - TVP_2022_67_2_a8
ER  - 
%0 Journal Article
%A E. Perfilev
%A V. Waсhtel
%T Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 365-383
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/
%G en
%F TVP_2022_67_2_a8
E. Perfilev; V. Waсhtel. Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 365-383. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/