Local tail asymptotics for the joint distribution of the length and of the maximum of a random walk excursion
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 365-383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This note is devoted to the study of the maximum of the excursion of a random walk with negative drift and light-tailed increments. More precisely, we determine the local asymptotics of the joint distribution of the length, the maximum, and the time at which this maximum is achieved. This result allows one to obtain a local central limit theorem for the length of the excursion conditioned on large values of the maximum.
Keywords: random walk, exponential change of measure.
Mots-clés : excursion, Cramér–Lundberg
@article{TVP_2022_67_2_a8,
     author = {E. Perfilev and V. Wa{\cyrs}htel},
     title = {Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {365--383},
     year = {2022},
     volume = {67},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/}
}
TY  - JOUR
AU  - E. Perfilev
AU  - V. Waсhtel
TI  - Local tail asymptotics for the joint distribution of the length and of the maximum of a random walk excursion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 365
EP  - 383
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/
LA  - en
ID  - TVP_2022_67_2_a8
ER  - 
%0 Journal Article
%A E. Perfilev
%A V. Waсhtel
%T Local tail asymptotics for the joint distribution of the length and of the maximum of a random walk excursion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 365-383
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/
%G en
%F TVP_2022_67_2_a8
E. Perfilev; V. Waсhtel. Local tail asymptotics for the joint distribution of the length and of the maximum of a random walk excursion. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 365-383. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/

[1] S. Asmussen, “Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the $GI/G/1$ queue”, Adv. in Appl. Probab., 14:1 (1982), 143–170 | DOI | MR | Zbl

[2] A. A. Borovkov, Probability theory, Universitext, Springer, London, 2013, xxviii+733 pp. | DOI | MR | Zbl

[3] R. A. Doney, “On the asymptotic behaviour of first passage times for transient random walk”, Probab. Theory Related Fields, 81:2 (1989), 239–246 | DOI | MR | Zbl

[4] D. L. Iglehart, “Extreme values in the $\mathbf{GI}/\mathbf{G}/1$ queue”, Ann. Math. Statist., 43:2 (1972), 627–635 | DOI | MR | Zbl

[5] D. L. Iglehart, “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2:4 (1974), 608–619 | DOI | MR | Zbl