Mots-clés : excursion, Cramér–Lundberg
@article{TVP_2022_67_2_a8,
author = {E. Perfilev and V. Wa{\cyrs}htel},
title = {Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {365--383},
year = {2022},
volume = {67},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/}
}
TY - JOUR AU - E. Perfilev AU - V. Waсhtel TI - Local tail asymptotics for the joint distribution of the length and of the maximum of a random walk excursion JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 365 EP - 383 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/ LA - en ID - TVP_2022_67_2_a8 ER -
%0 Journal Article %A E. Perfilev %A V. Waсhtel %T Local tail asymptotics for the joint distribution of the length and of the maximum of a random walk excursion %J Teoriâ veroâtnostej i ee primeneniâ %D 2022 %P 365-383 %V 67 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/ %G en %F TVP_2022_67_2_a8
E. Perfilev; V. Waсhtel. Local tail asymptotics for the joint distribution of the length and of the maximum of a random walk excursion. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 365-383. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/
[1] S. Asmussen, “Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the $GI/G/1$ queue”, Adv. in Appl. Probab., 14:1 (1982), 143–170 | DOI | MR | Zbl
[2] A. A. Borovkov, Probability theory, Universitext, Springer, London, 2013, xxviii+733 pp. | DOI | MR | Zbl
[3] R. A. Doney, “On the asymptotic behaviour of first passage times for transient random walk”, Probab. Theory Related Fields, 81:2 (1989), 239–246 | DOI | MR | Zbl
[4] D. L. Iglehart, “Extreme values in the $\mathbf{GI}/\mathbf{G}/1$ queue”, Ann. Math. Statist., 43:2 (1972), 627–635 | DOI | MR | Zbl
[5] D. L. Iglehart, “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2:4 (1974), 608–619 | DOI | MR | Zbl