Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 365-383
Voir la notice de l'article provenant de la source Math-Net.Ru
This note is devoted to the study of the maximum of the excursion of a random
walk with negative drift and light-tailed increments. More precisely, we
determine the local asymptotics of the joint distribution of the length,
the maximum, and the time at which this maximum is achieved. This result allows
one to obtain a local central limit theorem for the length of the excursion
conditioned on large values of the maximum.
Keywords:
random walk, Cramér–Lundberg, exponential change of measure.
Mots-clés : excursion
Mots-clés : excursion
@article{TVP_2022_67_2_a8,
author = {E. Perfilev and V. Wa{\cyrs}htel},
title = {Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {365--383},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/}
}
TY - JOUR AU - E. Perfilev AU - V. Waсhtel TI - Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 365 EP - 383 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/ LA - en ID - TVP_2022_67_2_a8 ER -
%0 Journal Article %A E. Perfilev %A V. Waсhtel %T Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion %J Teoriâ veroâtnostej i ee primeneniâ %D 2022 %P 365-383 %V 67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/ %G en %F TVP_2022_67_2_a8
E. Perfilev; V. Waсhtel. Local tail asymptotics for the joint distribution of the length and of the maximum of a~random walk excursion. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 365-383. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a8/