Extrema of the generalized allocation scheme based on an $m$-dependent sequence
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 351-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish some asymptotic estimations for the extrema of the generalized allocation scheme driven by $m$-dependent random variables, which extend some known results of Chuprunov and Fazekash [Discrete Math. Appl., 22 (2012), pp. 307–314] from the independent case to the $m$-dependent case.
Keywords: extrema, generalized allocation scheme, limit theorems, $m$-dependent random variables.
@article{TVP_2022_67_2_a7,
     author = {Y. Miao and X. M. Qu and G. Y. Yang},
     title = {Extrema of the generalized allocation scheme based on an $m$-dependent sequence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {351--364},
     year = {2022},
     volume = {67},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a7/}
}
TY  - JOUR
AU  - Y. Miao
AU  - X. M. Qu
AU  - G. Y. Yang
TI  - Extrema of the generalized allocation scheme based on an $m$-dependent sequence
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 351
EP  - 364
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a7/
LA  - ru
ID  - TVP_2022_67_2_a7
ER  - 
%0 Journal Article
%A Y. Miao
%A X. M. Qu
%A G. Y. Yang
%T Extrema of the generalized allocation scheme based on an $m$-dependent sequence
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 351-364
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a7/
%G ru
%F TVP_2022_67_2_a7
Y. Miao; X. M. Qu; G. Y. Yang. Extrema of the generalized allocation scheme based on an $m$-dependent sequence. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 351-364. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a7/

[1] A. Békéssy, “On classical occupancy problems. I”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 59–71 | MR | Zbl

[2] A. N. Chuprunov, I. Fazekas, “An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a given number of particles”, Discrete Math. Appl., 22:1 (2012), 101–122 | DOI | DOI | MR | Zbl

[3] A. N. Chuprunov, I. Fazekas, “An analogue of the generalised allocation scheme: limit theorems for the maximum cell load”, Discrete Math. Appl., 22:3 (2012), 307–314 | DOI | DOI | MR | Zbl

[4] I. Fazekas, A. Chuprunov, “The conditional maximum of Poisson random variables”, Comm. Statist. Theory Methods, 47:16 (2018), 3857–3870 | DOI | MR | Zbl

[5] V. F. Kolčin, “A certain class of limit theorems for conditional distributions”, Sel. Transl. Math. Stat. Probab., 11 (1973), 185–197 | MR | Zbl

[6] V. F. Kolchin, Random mappings, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1986, xiv+207 pp. | MR | MR | Zbl | Zbl

[7] V. F. Kolchin, Random graphs, Encyclopedia Math. Appl., 53, Cambridge Univ. Press, Cambridge, 1999, xii+252 pp. | DOI | MR | MR | Zbl | Zbl

[8] V. F. Kolchin, B. A. Sevast'yanov, V. P. Chistyakov, Random allocations, Scripta Series in Mathematics, V. H. Winston Sons, Washington, DC, 1978, xi+262 pp. | MR | MR | Zbl | Zbl

[9] G. F. Newell, “Asymptotic extremes for $m$-dependent random variables”, Ann. Math. Statist., 35:3 (1964), 1322–1325 | DOI | MR | Zbl

[10] S. Orey, “A central limit theorem for $m$-dependent random variables”, Duke Math. J., 25:4 (1958), 543–546 | DOI | MR | Zbl

[11] Yu. L. Pavlov, “Random forests”, Probabilistic methods in discrete mathematics (Petrozavodsk, 1996), VSP, Utrecht, 1997, 11–18 | MR | Zbl

[12] A. Rényi, “Three new proofs and a generalization of a theorem of Irving Weiss”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 7 (1962), 203–214 | MR | Zbl

[13] A. N. Timashev, “Ob asimptoticheskikh razlozheniyakh v lokalnykh predelnykh teoremakh v ravnoveroyatnykh skhemakh razmescheniya chastits po razlichnym yacheikam”, Diskret. matem., 12:1 (2000), 60–69 | DOI | DOI | MR | Zbl

[14] A. N. Timashov, “On the distribution of the number of cycles of a given length in the class of permutations with known number of cycles”, Discrete Math. Appl., 11:5 (2001), 471–483 | DOI | DOI | MR | Zbl

[15] I. Weiss, “Limiting distributions in some occupancy problems”, Ann. Math. Statist., 29:3 (1958), 878–884 | DOI | MR | Zbl