@article{TVP_2022_67_2_a5,
author = {Y. Goto and T. Kaneko and S. Kojima and M. Taniguchi},
title = {Likelihood ratio processes under nonstandard settings},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {309--326},
year = {2022},
volume = {67},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a5/}
}
TY - JOUR AU - Y. Goto AU - T. Kaneko AU - S. Kojima AU - M. Taniguchi TI - Likelihood ratio processes under nonstandard settings JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 309 EP - 326 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a5/ LA - en ID - TVP_2022_67_2_a5 ER -
Y. Goto; T. Kaneko; S. Kojima; M. Taniguchi. Likelihood ratio processes under nonstandard settings. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 309-326. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a5/
[1] R. L. Anderson, “Uses of variance component analysis in the interpretation of biological experiments”, Bull. Inst. Internat. Statist., 37:3 (1960), 71–90 | MR | Zbl
[2] T. W. Anderson, N. Kunitomo, K. Morimune, “Comparing single-equation estimators in a simultaneous equation system”, Econometric Theory, 2:1 (1986), 1–32 | DOI
[3] T. W. Anderson, H. Rubin, “Estimation of the parameters of a single equation in a complete system of stochastic equations”, Ann. Math. Statist., 20:1 (1949), 46–63 | DOI | MR | Zbl
[4] R. L. Basmann, “A generalized classical method of linear estimation of coefficients in a structural equation”, Econometrica, 25 (1957), 77–83 | DOI | MR | Zbl
[5] Y. Benghabrit, M. Hallin, “Locally asymptotically optimal tests for autoregressive against bilinear serial dependence”, Statist. Sinica, 6:1 (1996), 147–169 | MR | Zbl
[6] C. Cutting, D. Paindaveine, T. Verdebout, “Testing uniformity on high-dimensional spheres against monotone rotationally symmetric alternatives”, Ann. Statist., 45:3 (2017), 1024–1058 | DOI | MR | Zbl
[7] R. Dahlhaus, “Maximum likelihood estimation and model selection for locally stationary processes”, J. Nonparametr. Statist., 6:2-3 (1996), 171–191 | DOI | MR | Zbl
[8] G. E. Dickerson, “Experimental design for testing inbred lines of swine”, J. Animal Sci., 1:4 (1942), 326–341 | DOI
[9] R. A. Fisher, “XV.-The correlation between relatives on the supposition of Mendelian inheritance”, Trans. Roy. Soc. Edinburgh, 52:2 (1919), 399–433 | DOI
[10] Y. Fujikoshi, K. Morimune, N. Kunitomo, M. Taniguchi, “Asymptotic expansions of the distributions of the estimates of coefficients in a simultaneous equation system”, J. Econometrics, 18:2 (1982), 191–205 | DOI | MR | Zbl
[11] M. Hallin, J.-F. Ingenbleek, M. L. Puri, “Linear serial rank tests for randomness against ARMA alternatives”, Ann. Statist., 13:3 (1985), 1156–1181 | DOI | MR | Zbl
[12] M. Hallin, M. Taniguchi, A. Serroukh, K. Choy, “Local asymptotic normality for regression models with long-memory disturbance”, Ann. Statist., 27:6 (1999), 2054–2080 | DOI | MR | Zbl
[13] J. Hirukawa, M. Taniguchi, “LAN theorem for non-Gaussian locally stationary processes and its applications”, J. Statist. Plann. Inference, 136:3 (2006), 640–688 | DOI | MR | Zbl
[14] Y. Hosoya, Y. Tsukuda, N. Terui, “Ancillarity and the limited information maximum-likelihood estimation of a structural equation in a simultaneous equation system”, Econometric Theory, 5:3 (1989), 385–404 | DOI | MR
[15] I. A. Ibragimov, R. Z. Khas'minskii, “Local asymptotic normality for non-identically distributed observations”, Theory Probab. Appl., 20:2 (1976), 246–260 | DOI | MR | Zbl
[16] I. A. Ibragimov, R. Z. Has'minskii, Statistical estimation. Asymptotic theory, Appl. Math., 16, Springer-Verlag, New York–Berlin, 1981, vii+403 pp. | DOI | MR | MR | Zbl | Zbl
[17] P. Jeganathan, “Some aspects of asymptotic theory with applications to time series models”, Econometric Theory, 11:5 (1995), 818–887 | DOI | MR
[18] H. Kato, M. Taniguchi, M. Honda, “Statistical analysis for multiplicatively modulated nonlinear autoregressive model and its applications to electrophysiological signal analysis in humans”, IEEE Trans. Signal Process., 54:9 (2006), 3414–3425 | DOI | Zbl
[19] J.-P. Kreiss, “On adaptive estimation in stationary ARMA processes”, Ann. Statist., 15:1 (1987), 112–133 | DOI | MR | Zbl
[20] J.-P. Kreiss, “Local asymptotic normality for autoregression with infinite order”, J. Statist. Plann. Inference, 26:2 (1990), 185–219 | DOI | MR | Zbl
[21] L. Le Cam, “Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses”, Univ. California Publ. Statist., 3 (1960), 37–98 | MR | Zbl
[22] E. L. Lehmann, J. P. Romano, Testing statistical hypotheses, Springer Texts Statist., 3rd ed., Springer, New York, 2005, xiv+784 pp. | DOI | MR | MR | Zbl | Zbl
[23] O. Linton, “Adaptive estimation in ARCH models”, Econometric Theory, 9:4 (1993), 539–569 | DOI | MR
[24] D. Paindaveine, T. Verdebout, “Inference on the mode of weak directional signals: a Le Cam perspective on hypothesis testing near singularities”, Ann. Statist., 45:2 (2017), 800–832 | DOI | MR | Zbl
[25] P. C. B. Phillips, “Partially identified econometric models”, Econometric Theory, 5:2 (1989), 181–240 | DOI | MR
[26] G. G. Roussas, Contiguity of probability measures. Some applications in statistics, Cambridge Tracts in Math. and Math. Phys., 63, Cambridge Univ. Press, London–New York, 1972, xiii+248 pp. | DOI | MR | Zbl
[27] G. G. Roussas, “Asymptotic distribution of the log-likelihood function for stochastic processes”, Z. Wahrsch. Verw. Gebiete, 47:1 (1979), 31–46 | DOI | MR | Zbl
[28] K. Sakiyama, M. Taniguchi, “Testing composite hypotheses for locally stationary processes”, J. Time Ser. Anal., 24:4 (2003), 483–504 | DOI | MR | Zbl
[29] S. R. Searle, G. Casella, C. E. McCulloch, Variance components, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., John Wiley Sons, Inc., New York, 1992, xxvi+501 pp. | DOI | MR | Zbl
[30] R. H. Sharpe, C. H. Van Middelem, “Application of variance components to horticultural problems with special reference to a parathion residue study”, Proc. Amer. Soc. Horticultural Sci., 66 (1955), 415–420
[31] G. F. Sprague, L. A. Tatum, “General vs. specific combining ability in single crosses of corn”, Agron. J., 34:10 (1942), 923–932 | DOI
[32] A. R. Swensen, “The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend”, J. Multivariate Anal., 16:1 (1985), 54–70 | DOI | MR | Zbl
[33] K. Takeuchi, K. Morimune, “Third-order efficiency of the extended maximum likelihood estimators in a simultaneous equation system”, Econometrica, 53:1 (1985), 177–200 | DOI | MR | Zbl
[34] M. Talbot, “Yield variability of crop varieties in the U.K.”, J. Agric. Sci., 102:2 (1984), 315–321 | DOI
[35] M. Taniguchi, Y. Kakizawa, Asymptotic theory of statistical inference for time series, Springer Ser. Statist., Springer-Verlag, New York, 2000, xviii+661 pp. | DOI | MR | Zbl
[36] H. Theil, Repeated least squares applied to complete equation systems, Central planning bureau, The Hague, 1953
[37] H. Theil, Economic forecasts and policy, Contrib. Econom. Anal., 15, 2nd ed., North-Holland Publishing Co., Amsterdam, 1961, xxxii+567 pp.
[38] A. W. van der Vaart, Asymptotic statistics, Camb. Ser. Stat. Probab. Math., 3, paperback ed., Cambridge Univ. Press, Cambridge, 2000, xvi+443 pp. | DOI | MR | Zbl