Mots-clés : numéraire portfolio, NFLVR condition
@article{TVP_2022_67_2_a4,
author = {T. Choulli and S. Yansori},
title = {Log-optimal portfolio without {NFLVR:} existence, complete characterization, and duality},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {289--308},
year = {2022},
volume = {67},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a4/}
}
TY - JOUR AU - T. Choulli AU - S. Yansori TI - Log-optimal portfolio without NFLVR: existence, complete characterization, and duality JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 289 EP - 308 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a4/ LA - ru ID - TVP_2022_67_2_a4 ER -
T. Choulli; S. Yansori. Log-optimal portfolio without NFLVR: existence, complete characterization, and duality. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 289-308. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a4/
[1] D. Becherer, “The numeraire portfolio for unbounded semimartingales”, Finance Stoch., 5:3 (2001), 327–341 | DOI | MR | Zbl
[2] Huy N. Chau, A. Cosso, C. Fontana, O. Mostovyi, “Optimal investment with intermediate consumption under no unbounded profit with bounded risk”, J. Appl. Probab., 54:3 (2017), 710–719 | DOI | MR | Zbl
[3] T. Choulli, Jun Deng, Junfeng Ma, “How non-arbitrage, viability and numéraire portfolio are related”, Finance Stoch., 19:4 (2015), 719–741 | DOI | MR | Zbl
[4] T. Choulli, C. Stricker, Jia Li, “Minimal Hellinger martingale measures of order $q$”, Finance Stoch., 11:3 (2007), 399–427 | DOI | MR | Zbl
[5] T. Choulli, S. Yansori, “Log-optimal portfolio and numéraire portfolio for market models stopped at a random time”, Finance Stoch. (to appear); 2020 (v1 — 2018), 39 pp., arXiv: 1810.12762
[6] M. M. Christensen, K. Larsen, “No arbitrage and the growth optimal portfolio”, Stoch. Anal. Appl., 25:1 (2007), 255–280 | DOI | MR | Zbl
[7] J. Cvitanić, W. Schachermayer, Hui Wang, “Utility maximization in incomplete markets with random endowment”, Finance Stoch., 5:2 (2001), 259–272 | DOI | MR | Zbl
[8] F. Delbaen, W. Schachermayer, “The fundamental theorem of asset pricing for unbounded stochastic processes”, Math. Ann., 312:2 (1998), 215–250 | DOI | MR | Zbl
[9] C. Dellacherie, P.-A. Meyer, Probabilités et potentiel, Ch. V à VIII. Théorie des martingales, Actualités Sci. Indust., 1385, Publ. Inst. Math. Univ. Strasbourg, XVII, Rev. ed., Hermann, Paris, 1980, xviii+476 pp. | MR | Zbl
[10] Th. Göll, J. Kallsen, “A complete explicit solution to the log-optimal portfolio problem”, Ann. Appl. Probab., 13:2 (2003), 774–799 | DOI | MR | Zbl
[11] J. Jacod, Calcul stochastique et problèmes de martingales, Lecture Notes in Math., 714, Springer, Berlin, 1979, x+539 pp. | DOI | Zbl
[12] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | DOI | MR | MR | MR | Zbl | Zbl
[13] Y. M. Kabanov, “Contiguity of distributions of multivariate point processes”, Probability theory and mathematical statistics (Kyoto, 1986), Lecture Notes in Math., 1299, Springer, Berlin, 1988, 140–157 | DOI | MR | Zbl
[14] Yu. M. Kabanov, “On the FTAP of Kreps–Delbaen–Schachermayer”, Statistics and control of stochastic processes, Papers of the Steklov Math. Inst. seminar (Moscow, 1995/1996), World Sci. Publ., River Edge, NJ, 1997, 191–203 | DOI | MR | Zbl
[15] Yu. Kabanov, C. Kardaras, Shiqi Song, “No arbitrage of the first kind and local martingale numéraires”, Finance Stoch., 20:4 (2016), 1097–1108 | DOI | MR | Zbl
[16] I. Karatzas, C. Kardaras, “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:4 (2007), 447–493 | DOI | MR | Zbl
[17] I. Karatzas, J. P. Lehoczky, S. E. Shreve, “Optimal portfolio and consumption decisions for a ‘small investor’ on a finite horizon”, SIAM J. Control Optim., 25:6 (1987), 1557–1586 | DOI | MR | Zbl
[18] I. Karatzas, G. Žitković, “Optimal consumption from investment and random endowment in incomplete semimartingale markets”, Ann. Probab., 31:4 (2003), 1821–1858 | DOI | MR | Zbl
[19] N. Kazamaki, Continuous exponential martingales and BMO, Lecture Notes in Math., 1579, Springer-Verlag, Berlin, 1994, viii+91 pp. | DOI | MR | Zbl
[20] D. Kramkov, W. Schachermayer, “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR | Zbl
[21] M. Loewenstein, G. A. Willard, “Local martingales, arbitrage, and viability. Free snacks and cheap thrills”, Econom. Theory, 16:1 (2000), 135–161 | DOI | MR | Zbl
[22] J. B. Long Jr., “The numeraire portfolio”, J. Financ. Econ., 26:1 (1990), 29–69 | DOI
[23] Junfeng Ma, Minimal Hellinger deflators and HARA forward utilities with applications: Hedging with variable horizon, PhD thesis, Univ. of Alberta, Edmonton, AB, 2013, 257 pp. | DOI | MR
[24] R. C. Merton, “Optimum consumption and portfolio rules in a continuous-time model”, J. Econom. Theory, 3:4 (1971), 373–413 | DOI | MR | Zbl
[25] R. C. Merton, “Theory of rational option pricing”, Bell J. Econom. and Management Sci., 4:1 (1973), 141–183 | DOI | MR | Zbl
[26] O. Mostovyi, “Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption”, Finance Stoch., 19:1 (2015), 135–159 | DOI | MR | Zbl
[27] J. Ruf, “Hedging under arbitrage”, Math. Finance, 23:2 (2013), 297–317 | DOI | MR | Zbl
[28] K. Takaoka, M. Schweizer, “A note on the condition of no unbounded profit with bounded risk”, Finance Stoch., 18:2 (2014), 393–405 | DOI | MR | Zbl