Log-optimal portfolio without NFLVR: existence, complete characterization, and duality
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 289-308 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper addresses the log-optimal portfolio, which is the portfolio with finite expected log-utility that maximizes the expected logarithm utility from terminal wealth, for an arbitrary general semimartingale model. The most advanced literature on this topic elaborates existence and characterization of this portfolio under the no-free-lunch-with-vanishing-risk (NFLVR for short) assumption, while there are many financial models violating NFLVR and admitting the log-optimal portfolio. In this paper, we provide a complete and explicit characterization of the log-optimal portfolio and its associated optimal deflator, give necessary and sufficient conditions for their existence, and elaborate their duality no matter what the market model. Furthermore, our characterization gives an explicit and direct relationship between log-optimal and numéraire portfolios without changing the probability or the numéraire.
Keywords: log-optimal portfolio, log-utility, NUPBR condition, deflator, semimartingale model and characteristics.
Mots-clés : numéraire portfolio, NFLVR condition
@article{TVP_2022_67_2_a4,
     author = {T. Choulli and S. Yansori},
     title = {Log-optimal portfolio without {NFLVR:} existence, complete characterization, and duality},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {289--308},
     year = {2022},
     volume = {67},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a4/}
}
TY  - JOUR
AU  - T. Choulli
AU  - S. Yansori
TI  - Log-optimal portfolio without NFLVR: existence, complete characterization, and duality
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 289
EP  - 308
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a4/
LA  - ru
ID  - TVP_2022_67_2_a4
ER  - 
%0 Journal Article
%A T. Choulli
%A S. Yansori
%T Log-optimal portfolio without NFLVR: existence, complete characterization, and duality
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 289-308
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a4/
%G ru
%F TVP_2022_67_2_a4
T. Choulli; S. Yansori. Log-optimal portfolio without NFLVR: existence, complete characterization, and duality. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 289-308. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a4/

[1] D. Becherer, “The numeraire portfolio for unbounded semimartingales”, Finance Stoch., 5:3 (2001), 327–341 | DOI | MR | Zbl

[2] Huy N. Chau, A. Cosso, C. Fontana, O. Mostovyi, “Optimal investment with intermediate consumption under no unbounded profit with bounded risk”, J. Appl. Probab., 54:3 (2017), 710–719 | DOI | MR | Zbl

[3] T. Choulli, Jun Deng, Junfeng Ma, “How non-arbitrage, viability and numéraire portfolio are related”, Finance Stoch., 19:4 (2015), 719–741 | DOI | MR | Zbl

[4] T. Choulli, C. Stricker, Jia Li, “Minimal Hellinger martingale measures of order $q$”, Finance Stoch., 11:3 (2007), 399–427 | DOI | MR | Zbl

[5] T. Choulli, S. Yansori, “Log-optimal portfolio and numéraire portfolio for market models stopped at a random time”, Finance Stoch. (to appear); 2020 (v1 — 2018), 39 pp., arXiv: 1810.12762

[6] M. M. Christensen, K. Larsen, “No arbitrage and the growth optimal portfolio”, Stoch. Anal. Appl., 25:1 (2007), 255–280 | DOI | MR | Zbl

[7] J. Cvitanić, W. Schachermayer, Hui Wang, “Utility maximization in incomplete markets with random endowment”, Finance Stoch., 5:2 (2001), 259–272 | DOI | MR | Zbl

[8] F. Delbaen, W. Schachermayer, “The fundamental theorem of asset pricing for unbounded stochastic processes”, Math. Ann., 312:2 (1998), 215–250 | DOI | MR | Zbl

[9] C. Dellacherie, P.-A. Meyer, Probabilités et potentiel, Ch. V à VIII. Théorie des martingales, Actualités Sci. Indust., 1385, Publ. Inst. Math. Univ. Strasbourg, XVII, Rev. ed., Hermann, Paris, 1980, xviii+476 pp. | MR | Zbl

[10] Th. Göll, J. Kallsen, “A complete explicit solution to the log-optimal portfolio problem”, Ann. Appl. Probab., 13:2 (2003), 774–799 | DOI | MR | Zbl

[11] J. Jacod, Calcul stochastique et problèmes de martingales, Lecture Notes in Math., 714, Springer, Berlin, 1979, x+539 pp. | DOI | Zbl

[12] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | DOI | MR | MR | MR | Zbl | Zbl

[13] Y. M. Kabanov, “Contiguity of distributions of multivariate point processes”, Probability theory and mathematical statistics (Kyoto, 1986), Lecture Notes in Math., 1299, Springer, Berlin, 1988, 140–157 | DOI | MR | Zbl

[14] Yu. M. Kabanov, “On the FTAP of Kreps–Delbaen–Schachermayer”, Statistics and control of stochastic processes, Papers of the Steklov Math. Inst. seminar (Moscow, 1995/1996), World Sci. Publ., River Edge, NJ, 1997, 191–203 | DOI | MR | Zbl

[15] Yu. Kabanov, C. Kardaras, Shiqi Song, “No arbitrage of the first kind and local martingale numéraires”, Finance Stoch., 20:4 (2016), 1097–1108 | DOI | MR | Zbl

[16] I. Karatzas, C. Kardaras, “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:4 (2007), 447–493 | DOI | MR | Zbl

[17] I. Karatzas, J. P. Lehoczky, S. E. Shreve, “Optimal portfolio and consumption decisions for a ‘small investor’ on a finite horizon”, SIAM J. Control Optim., 25:6 (1987), 1557–1586 | DOI | MR | Zbl

[18] I. Karatzas, G. Žitković, “Optimal consumption from investment and random endowment in incomplete semimartingale markets”, Ann. Probab., 31:4 (2003), 1821–1858 | DOI | MR | Zbl

[19] N. Kazamaki, Continuous exponential martingales and BMO, Lecture Notes in Math., 1579, Springer-Verlag, Berlin, 1994, viii+91 pp. | DOI | MR | Zbl

[20] D. Kramkov, W. Schachermayer, “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR | Zbl

[21] M. Loewenstein, G. A. Willard, “Local martingales, arbitrage, and viability. Free snacks and cheap thrills”, Econom. Theory, 16:1 (2000), 135–161 | DOI | MR | Zbl

[22] J. B. Long Jr., “The numeraire portfolio”, J. Financ. Econ., 26:1 (1990), 29–69 | DOI

[23] Junfeng Ma, Minimal Hellinger deflators and HARA forward utilities with applications: Hedging with variable horizon, PhD thesis, Univ. of Alberta, Edmonton, AB, 2013, 257 pp. | DOI | MR

[24] R. C. Merton, “Optimum consumption and portfolio rules in a continuous-time model”, J. Econom. Theory, 3:4 (1971), 373–413 | DOI | MR | Zbl

[25] R. C. Merton, “Theory of rational option pricing”, Bell J. Econom. and Management Sci., 4:1 (1973), 141–183 | DOI | MR | Zbl

[26] O. Mostovyi, “Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption”, Finance Stoch., 19:1 (2015), 135–159 | DOI | MR | Zbl

[27] J. Ruf, “Hedging under arbitrage”, Math. Finance, 23:2 (2013), 297–317 | DOI | MR | Zbl

[28] K. Takaoka, M. Schweizer, “A note on the condition of no unbounded profit with bounded risk”, Finance Stoch., 18:2 (2014), 393–405 | DOI | MR | Zbl