Keywords: Routh–Romanovski polynomials, associated Legendre function, exponential functionals, Bougerol's identity.
@article{TVP_2022_67_2_a3,
author = {J. Arista and N. Demni},
title = {Explicit expressions of the {Hua{\textendash}Pickrell} semigroup},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {264--288},
year = {2022},
volume = {67},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a3/}
}
J. Arista; N. Demni. Explicit expressions of the Hua–Pickrell semigroup. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 264-288. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a3/
[1] G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999, xvi+664 pp. | DOI | MR | Zbl
[2] L. Alili, D. Dufresne, M. Yor, “Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement brownien avec drift”, Exponential functionals and principal values related to Brownian motion, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1997, 3–14 | MR | Zbl
[3] L. Alili, H. Matsumoto, T. Shiraishi, “On a triplet of exponential Brownian functionals”, Séminaire de probabilités XXXV, Lecture Notes in Math., 1755, Springer, Berlin, 2001, 396–415 | DOI | MR | Zbl
[4] R. Askey, “An integral of Ramanujan and orthogonal polynomials”, J. Indian Math. Soc. (N.S.), 51 (1987), 27–36 | MR | Zbl
[5] R. Askey, J. Fitch, “Integral representations for Jacobi polynomials and some applications”, J. Math. Anal. Appl., 26:2 (1969), 411–437 | DOI | MR | Zbl
[6] T. Assiotis, “Hua–Pickrell diffusions and Feller processes on the boundary of the graph of spectra”, Ann. Inst. Henri Poincaré Probab. Stat., 56:2 (2020), 1251–1283 | DOI | MR | Zbl
[7] A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123 | DOI | MR | Zbl
[8] A. I. Bufetov, Yanqi Qiu, “The explicit formulae for scaling limits in the ergodic decomposition of infinite Pickrell measures”, Ark. Mat., 54:2 (2016), 403–435 | DOI | MR | Zbl
[9] P. Bourgade, A. Nikeghbali, A. Rouault, “Circular Jacobi ensembles and deformed Verblunsky coefficients”, Int. Math. Res. Not. IMRN, 2009:23 (2009), 4357–4394 | DOI | MR | Zbl
[10] H. S. Cohl, Thinh H. Dang, T. M. Dunster, “Fundamental solution and Gegenbauer expansions of Helmholtz operators in Riemannian spaces of constant curvature”, SIGMA, 14 (2018), 136, 45 pp. | DOI | MR | Zbl
[11] J. W. Dabrowska, A. Khare, U. P. Sukhatme, “Explicit wavefunctions for shape-invariant potentials by operator techniques”, J. Phys. A, 21:4 (1988), L195–L200 | DOI | MR
[12] P. Deift, D. Gioev, Random matrix theory: invariant ensembles and universality, Courant Lect. Notes Math., 18, Courant Inst. Math. Sci., New York, Providence, RI, 2009, x+217 pp. | DOI | MR | Zbl
[13] D. Dufresne, “The integral of geometric Brownian motion”, Adv. in Appl. Probab., 33:1 (2001), 223–241 | DOI | MR | Zbl
[14] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl
[15] G. Heckman, G. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Perspect. Math., 16, Academic Press, Inc., San Diego, CA, 1994, xii+225 pp. | MR | Zbl
[16] N. Ikeda, H. Matsumoto, “Brownian motion on the hyperbolic plane and Selberg trace formula”, J. Funct. Anal., 163:1 (1999), 63–110 | DOI | MR | Zbl
[17] A. Khare, U. P. Sukhatme, “Scattering amplitudes for supersymmetric shape-invariant potentials by operator methods”, J. Phys. A, 21:9 (1988), L501–L508 | DOI | MR
[18] G. Lévai, F. Cannata, A. Ventura, “Algebraic and scattering aspects of a $\mathscr{PT}$-supersymmetric solvable potential”, J. Phys. A, 34:4 (2001), 839–844 | DOI | MR | Zbl
[19] M. Masjed-Jamei, F. Marcellán, E. J. Huertas, “A finite class of orthogonal functions generated by Routh–Romanovski polynomials”, Complex Var. Elliptic Equ., 59:2 (2014), 162–171 | DOI | MR | Zbl
[20] H. Matsumoto, M. Yor, “A relationship between Brownian motions with opposite drifts via certain enlargements of the Brownian filtration”, Osaka J. Math., 38:2 (2001), 383–398 | MR | Zbl
[21] H. Matsumoto, M. Yor, “On Dufresne's relation between the probability laws of exponential functionals of Brownian motions with different drifts”, Adv. in Appl. Probab., 35:1 (2003), 184–206 | DOI | MR | Zbl
[22] H. Matsumoto, M. Yor, “Exponential functionals of Brownian motion. I. Probability laws at fixed time”, Probab. Surv., 2 (2005), 312–347 | DOI | MR | Zbl
[23] Yu. A. Neretin, “Some continuous analogs of the expansion in Jacobi polynomials and vector-valued orthogonal bases”, Funct. Anal. Appl., 39:2 (2005), 106–119 | DOI | DOI | MR | Zbl
[24] J. Peetre, “Correspondence principle for the quantized annulus, Romanovski polynomials, and Morse potential”, J. Funct. Anal., 117:2 (1993), 377–400 | DOI | MR | Zbl
[25] L. C. G. Rogers, J. W. Pitman, “Markov functions”, Ann. Probab., 9:4 (1981), 573–582 | DOI | MR | Zbl
[26] A. P. Raposo, H. J. Weber, D. E. Alvarez-Castillo, M. Kirchbach, “Romanovski polynomials in selected physics problems”, Cent. Eur. J. Phys., 5:3 (2007), 253–284 | DOI
[27] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Part I, 2nd ed., Oxford Univ. Press, Oxford, 1962, vi+203 pp. | MR | MR | Zbl | Zbl
[28] S. Vakeroudis, “Bougerol's identity in law and extensions”, Probab. Surv., 9 (2012), 411–437 | DOI | MR | Zbl
[29] J. F. van Diejen, A. N. Kirillov, “A combinatorial formula for the associated Legendre functions of integer degree”, Adv. Math., 149:1 (2000), 61–88 | DOI | MR | Zbl
[30] E. Wong, “The construction of a class of stationary Markoff processes”, Stochastic processes in mathematical physics and engineering, Proc. Sympos. Appl. Math., 16, Amer. Math. Soc., Providence, RI, 1964, 264–276 | DOI | MR | Zbl
[31] M. Yor, “On some exponential functionals of Brownian motion”, Adv. in Appl. Probab., 24:3 (1992), 509–531 | DOI | MR | Zbl
[32] M. Yor, “Interpretations in terms of Brownian and Bessel meanders of the distribution of a subordinated perpetuity”, Lévy processes, Birkhäuser Boston, Boston, MA, 2001, 361–375 | DOI | MR | Zbl