Explicit expressions of the Hua–Pickrell semigroup
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 264-288 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the one-dimensional Hua–Pickrell diffusion. We start by revisiting the stationary case considered by E. Wong for which we supply omitted details and write down a unified expression of its semigroup density through the associated Legendre function in the cut. Next, we focus on the general (not necessarily stationary) case for which we prove an intertwining relation between Hua–Pickrell diffusions corresponding to different sets of parameters. Using the Cauchy beta integral on the one hand and Girsanov's theorem on the other hand, we discuss the connection between the stationary and general cases. Afterwards, we prove our main result providing novel integral representations of the Hua–Pickrell semigroup density, answering a question raised by Alili, Matsumoto, and Shiraishi [Séminaire de Probabilités XXXV, Lecture Notes in Math. 1755, Springer, 2001, pp. 396–415]. To this end, we appeal to the semigroup density of the Maass Laplacian and extend it to purely imaginary values of the magnetic field. In the last section, we use the Karlin–McGregor formula to derive an expression of the semigroup density of the multidimensional Hua–Pickrell particle system introduced by T. Assiotis.
Mots-clés : Hua–Pickrell diffusion
Keywords: Routh–Romanovski polynomials, associated Legendre function, exponential functionals, Bougerol's identity.
@article{TVP_2022_67_2_a3,
     author = {J. Arista and N. Demni},
     title = {Explicit expressions of the {Hua{\textendash}Pickrell} semigroup},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {264--288},
     year = {2022},
     volume = {67},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a3/}
}
TY  - JOUR
AU  - J. Arista
AU  - N. Demni
TI  - Explicit expressions of the Hua–Pickrell semigroup
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 264
EP  - 288
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a3/
LA  - ru
ID  - TVP_2022_67_2_a3
ER  - 
%0 Journal Article
%A J. Arista
%A N. Demni
%T Explicit expressions of the Hua–Pickrell semigroup
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 264-288
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a3/
%G ru
%F TVP_2022_67_2_a3
J. Arista; N. Demni. Explicit expressions of the Hua–Pickrell semigroup. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 264-288. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a3/

[1] G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999, xvi+664 pp. | DOI | MR | Zbl

[2] L. Alili, D. Dufresne, M. Yor, “Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement brownien avec drift”, Exponential functionals and principal values related to Brownian motion, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 1997, 3–14 | MR | Zbl

[3] L. Alili, H. Matsumoto, T. Shiraishi, “On a triplet of exponential Brownian functionals”, Séminaire de probabilités XXXV, Lecture Notes in Math., 1755, Springer, Berlin, 2001, 396–415 | DOI | MR | Zbl

[4] R. Askey, “An integral of Ramanujan and orthogonal polynomials”, J. Indian Math. Soc. (N.S.), 51 (1987), 27–36 | MR | Zbl

[5] R. Askey, J. Fitch, “Integral representations for Jacobi polynomials and some applications”, J. Math. Anal. Appl., 26:2 (1969), 411–437 | DOI | MR | Zbl

[6] T. Assiotis, “Hua–Pickrell diffusions and Feller processes on the boundary of the graph of spectra”, Ann. Inst. Henri Poincaré Probab. Stat., 56:2 (2020), 1251–1283 | DOI | MR | Zbl

[7] A. Borodin, G. Olshanski, “Infinite random matrices and ergodic measures”, Comm. Math. Phys., 223:1 (2001), 87–123 | DOI | MR | Zbl

[8] A. I. Bufetov, Yanqi Qiu, “The explicit formulae for scaling limits in the ergodic decomposition of infinite Pickrell measures”, Ark. Mat., 54:2 (2016), 403–435 | DOI | MR | Zbl

[9] P. Bourgade, A. Nikeghbali, A. Rouault, “Circular Jacobi ensembles and deformed Verblunsky coefficients”, Int. Math. Res. Not. IMRN, 2009:23 (2009), 4357–4394 | DOI | MR | Zbl

[10] H. S. Cohl, Thinh H. Dang, T. M. Dunster, “Fundamental solution and Gegenbauer expansions of Helmholtz operators in Riemannian spaces of constant curvature”, SIGMA, 14 (2018), 136, 45 pp. | DOI | MR | Zbl

[11] J. W. Dabrowska, A. Khare, U. P. Sukhatme, “Explicit wavefunctions for shape-invariant potentials by operator techniques”, J. Phys. A, 21:4 (1988), L195–L200 | DOI | MR

[12] P. Deift, D. Gioev, Random matrix theory: invariant ensembles and universality, Courant Lect. Notes Math., 18, Courant Inst. Math. Sci., New York, Providence, RI, 2009, x+217 pp. | DOI | MR | Zbl

[13] D. Dufresne, “The integral of geometric Brownian motion”, Adv. in Appl. Probab., 33:1 (2001), 223–241 | DOI | MR | Zbl

[14] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl

[15] G. Heckman, G. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Perspect. Math., 16, Academic Press, Inc., San Diego, CA, 1994, xii+225 pp. | MR | Zbl

[16] N. Ikeda, H. Matsumoto, “Brownian motion on the hyperbolic plane and Selberg trace formula”, J. Funct. Anal., 163:1 (1999), 63–110 | DOI | MR | Zbl

[17] A. Khare, U. P. Sukhatme, “Scattering amplitudes for supersymmetric shape-invariant potentials by operator methods”, J. Phys. A, 21:9 (1988), L501–L508 | DOI | MR

[18] G. Lévai, F. Cannata, A. Ventura, “Algebraic and scattering aspects of a $\mathscr{PT}$-supersymmetric solvable potential”, J. Phys. A, 34:4 (2001), 839–844 | DOI | MR | Zbl

[19] M. Masjed-Jamei, F. Marcellán, E. J. Huertas, “A finite class of orthogonal functions generated by Routh–Romanovski polynomials”, Complex Var. Elliptic Equ., 59:2 (2014), 162–171 | DOI | MR | Zbl

[20] H. Matsumoto, M. Yor, “A relationship between Brownian motions with opposite drifts via certain enlargements of the Brownian filtration”, Osaka J. Math., 38:2 (2001), 383–398 | MR | Zbl

[21] H. Matsumoto, M. Yor, “On Dufresne's relation between the probability laws of exponential functionals of Brownian motions with different drifts”, Adv. in Appl. Probab., 35:1 (2003), 184–206 | DOI | MR | Zbl

[22] H. Matsumoto, M. Yor, “Exponential functionals of Brownian motion. I. Probability laws at fixed time”, Probab. Surv., 2 (2005), 312–347 | DOI | MR | Zbl

[23] Yu. A. Neretin, “Some continuous analogs of the expansion in Jacobi polynomials and vector-valued orthogonal bases”, Funct. Anal. Appl., 39:2 (2005), 106–119 | DOI | DOI | MR | Zbl

[24] J. Peetre, “Correspondence principle for the quantized annulus, Romanovski polynomials, and Morse potential”, J. Funct. Anal., 117:2 (1993), 377–400 | DOI | MR | Zbl

[25] L. C. G. Rogers, J. W. Pitman, “Markov functions”, Ann. Probab., 9:4 (1981), 573–582 | DOI | MR | Zbl

[26] A. P. Raposo, H. J. Weber, D. E. Alvarez-Castillo, M. Kirchbach, “Romanovski polynomials in selected physics problems”, Cent. Eur. J. Phys., 5:3 (2007), 253–284 | DOI

[27] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Part I, 2nd ed., Oxford Univ. Press, Oxford, 1962, vi+203 pp. | MR | MR | Zbl | Zbl

[28] S. Vakeroudis, “Bougerol's identity in law and extensions”, Probab. Surv., 9 (2012), 411–437 | DOI | MR | Zbl

[29] J. F. van Diejen, A. N. Kirillov, “A combinatorial formula for the associated Legendre functions of integer degree”, Adv. Math., 149:1 (2000), 61–88 | DOI | MR | Zbl

[30] E. Wong, “The construction of a class of stationary Markoff processes”, Stochastic processes in mathematical physics and engineering, Proc. Sympos. Appl. Math., 16, Amer. Math. Soc., Providence, RI, 1964, 264–276 | DOI | MR | Zbl

[31] M. Yor, “On some exponential functionals of Brownian motion”, Adv. in Appl. Probab., 24:3 (1992), 509–531 | DOI | MR | Zbl

[32] M. Yor, “Interpretations in terms of Brownian and Bessel meanders of the distribution of a subordinated perpetuity”, Lévy processes, Birkhäuser Boston, Boston, MA, 2001, 361–375 | DOI | MR | Zbl