Mots-clés : Poisson kernel
@article{TVP_2022_67_2_a2,
author = {B. P. Harlamov},
title = {Distribution density of the first exit point of a~two-dimensional diffusion process from a~circle neighborhood of its initial point: the inhomogeneous case},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {247--263},
year = {2022},
volume = {67},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a2/}
}
TY - JOUR AU - B. P. Harlamov TI - Distribution density of the first exit point of a two-dimensional diffusion process from a circle neighborhood of its initial point: the inhomogeneous case JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 247 EP - 263 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a2/ LA - ru ID - TVP_2022_67_2_a2 ER -
%0 Journal Article %A B. P. Harlamov %T Distribution density of the first exit point of a two-dimensional diffusion process from a circle neighborhood of its initial point: the inhomogeneous case %J Teoriâ veroâtnostej i ee primeneniâ %D 2022 %P 247-263 %V 67 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a2/ %G ru %F TVP_2022_67_2_a2
B. P. Harlamov. Distribution density of the first exit point of a two-dimensional diffusion process from a circle neighborhood of its initial point: the inhomogeneous case. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 247-263. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a2/
[1] E. B. Dynkin, Markov processes, v. 1, 2, Grundlehren Math. Wiss., 121, 122, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1965, xii+365 pp., viii+274 pp. | DOI | MR | MR | Zbl | Zbl
[2] B. P. Harlamov, “On the distribution density of the first exit point of a diffusion process with break from a small circular neighborhood of its initial point”, J. Math. Sci. (N.Y.), 258:6 (2021), 935–946 | DOI | MR | Zbl
[3] S. G. Mikhlin, Mathematical physics, an advanced course, North-Holland Ser. Appl. Math. Mech., 11, North-Holland Publishing Co., Amsterdam–London, 1970, xiv+561 pp. | MR | Zbl | Zbl
[4] B. Harlamov, Continuous semi-Markov processes, Appl. Stoch. Methods Ser., ISTE, London; John Wiley Sons, Inc., Hoboken, NJ, 2008, 375 pp. | DOI | MR | MR | Zbl | Zbl
[5] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | MR | Zbl | Zbl
[6] H. B. Dwight, Tables of integrals and other mathematical data, 4th ed., The Macmillan Co., New York, 1961, x+336 pp. | MR | Zbl | Zbl
[7] A. G. Sveshnikov, A. N. Tikhonov, The theory of functions of a complex variable, 2nd ed., Mir, Moscow, 1982, 333 pp. | MR | MR | Zbl | Zbl