On asymptotic strategies in the stochastic Colonel Blotto game
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 396-407
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a stochastic modification of the Colonel Blotto game, also called the gladiator game. Each of two players has a given amount of resources (strengths), which can be arbitrarily distributed between a given number of gladiators. Once the strengths are distributed, the teams begin a battle consisting of individual fights of gladiators. In each fight, the winning probability of a gladiator is proportional to its strength (the amount of resources). Each player tries to distribute resources in order to maximize the winning probability. We consider the games in which a stronger team has a sufficiently large number of gladiators. For such games, we describe the Nash equilibria, present formulas for evaluation of boundaries between optimal strategy profiles, and investigate the asymptotic behavior of the boundaries.
Keywords:
Colonel Blotto game, Nash equilibrium, limit strategy.
Mots-clés : gamma distribution
Mots-clés : gamma distribution
@article{TVP_2022_67_2_a10,
author = {V. V. Kharlamov},
title = {On asymptotic strategies in the stochastic {Colonel} {Blotto} game},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {396--407},
year = {2022},
volume = {67},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a10/}
}
V. V. Kharlamov. On asymptotic strategies in the stochastic Colonel Blotto game. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 396-407. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a10/
[1] E. Borel, “La théorie du jeu et les équations intégrales à noyau symétrique”, C. R. Acad. Sci. Paris, 173 (1921), 1304–1308 | Zbl
[2] K. S. Kaminsky, E. M. Luks, P. I. Nelson, “Strategy, nontransitive dominance and the exponential distribution”, Austral. J. Statist., 26:2 (1984), 111–118 | DOI | MR | Zbl
[3] Y. Rinott, M. Scarsini, Yaming Yu, “A Colonel Blotto gladiator game”, Math. Oper. Res., 37:4 (2012), 574–590 | DOI | MR | Zbl
[4] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, eds., NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl