On asymptotic strategies in the stochastic Colonel Blotto game
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 396-407 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a stochastic modification of the Colonel Blotto game, also called the gladiator game. Each of two players has a given amount of resources (strengths), which can be arbitrarily distributed between a given number of gladiators. Once the strengths are distributed, the teams begin a battle consisting of individual fights of gladiators. In each fight, the winning probability of a gladiator is proportional to its strength (the amount of resources). Each player tries to distribute resources in order to maximize the winning probability. We consider the games in which a stronger team has a sufficiently large number of gladiators. For such games, we describe the Nash equilibria, present formulas for evaluation of boundaries between optimal strategy profiles, and investigate the asymptotic behavior of the boundaries.
Keywords: Colonel Blotto game, Nash equilibrium, limit strategy.
Mots-clés : gamma distribution
@article{TVP_2022_67_2_a10,
     author = {V. V. Kharlamov},
     title = {On asymptotic strategies in the stochastic {Colonel} {Blotto} game},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {396--407},
     year = {2022},
     volume = {67},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a10/}
}
TY  - JOUR
AU  - V. V. Kharlamov
TI  - On asymptotic strategies in the stochastic Colonel Blotto game
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 396
EP  - 407
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a10/
LA  - ru
ID  - TVP_2022_67_2_a10
ER  - 
%0 Journal Article
%A V. V. Kharlamov
%T On asymptotic strategies in the stochastic Colonel Blotto game
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 396-407
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a10/
%G ru
%F TVP_2022_67_2_a10
V. V. Kharlamov. On asymptotic strategies in the stochastic Colonel Blotto game. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 396-407. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a10/

[1] E. Borel, “La théorie du jeu et les équations intégrales à noyau symétrique”, C. R. Acad. Sci. Paris, 173 (1921), 1304–1308 | Zbl

[2] K. S. Kaminsky, E. M. Luks, P. I. Nelson, “Strategy, nontransitive dominance and the exponential distribution”, Austral. J. Statist., 26:2 (1984), 111–118 | DOI | MR | Zbl

[3] Y. Rinott, M. Scarsini, Yaming Yu, “A Colonel Blotto gladiator game”, Math. Oper. Res., 37:4 (2012), 574–590 | DOI | MR | Zbl

[4] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, eds., NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl