On two limit values of the chromatic number of a~random hypergraph
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 223-246

Voir la notice de l'article provenant de la source Math-Net.Ru

The limit concentration of the values of the chromatic number of the random hypergraph $H(n,k,p)$ in the binomial model is studied. It is proved that, for a fixed $k\ge 3$ and with not too rapidly increasing $n^{k-1}p$, the chromatic number of the hypergraph $H(n,k,p)$ lies, with probability tending to $1$, in the set of two consecutive values. Moreover, it is shown that, under slightly stronger constraints on the growth of $n^{k-1}p$, these values can be explicitly evaluated as functions of $n$ and $p$.
Keywords: random hypergraph, chromatic number, second moment method.
@article{TVP_2022_67_2_a1,
     author = {Yu. A. Demidovich and D. A. Shabanov},
     title = {On two limit values of the chromatic number of a~random hypergraph},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {223--246},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a1/}
}
TY  - JOUR
AU  - Yu. A. Demidovich
AU  - D. A. Shabanov
TI  - On two limit values of the chromatic number of a~random hypergraph
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 223
EP  - 246
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a1/
LA  - ru
ID  - TVP_2022_67_2_a1
ER  - 
%0 Journal Article
%A Yu. A. Demidovich
%A D. A. Shabanov
%T On two limit values of the chromatic number of a~random hypergraph
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 223-246
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a1/
%G ru
%F TVP_2022_67_2_a1
Yu. A. Demidovich; D. A. Shabanov. On two limit values of the chromatic number of a~random hypergraph. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 223-246. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a1/