On a~new estimation method of the Bernoulli regression function
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 209-222
Voir la notice de l'article provenant de la source Math-Net.Ru
A new estimator for a Bernoulli regression function based on Bernstein
polynomials is constructed. Its consistency and asymptotic normality are
studied. A criterion for testing the hypothesis on the form of a Bernoulli
regression function and a criterion for testing the hypothesis on the
equality of two Bernoulli regression functions are constructed. The
consistency of these two criteria is studied.
Keywords:
Bernstein polynomial, Bernoulli regression function, consistency, power of a criterion, one-sided alternatives.
@article{TVP_2022_67_2_a0,
author = {P. Babilua and \`E. A. Nadaraya},
title = {On a~new estimation method of the {Bernoulli} regression function},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {209--222},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a0/}
}
TY - JOUR AU - P. Babilua AU - È. A. Nadaraya TI - On a~new estimation method of the Bernoulli regression function JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 209 EP - 222 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a0/ LA - ru ID - TVP_2022_67_2_a0 ER -
P. Babilua; È. A. Nadaraya. On a~new estimation method of the Bernoulli regression function. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 2, pp. 209-222. http://geodesic.mathdoc.fr/item/TVP_2022_67_2_a0/