On the accuracy in a combinatorial central limit theorem: the characteristic function method
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 150-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to present a new proof of an explicit version of the Berry–Esseen type inequality of Bolthausen [Z. Wahrsch. Verw. Gebiete, 66 (1984), pp. 379–386]. The literature already provides several proofs using variants of Stein's method. The characteristic function method has also been applied but led only to weaker results. In this paper, we show how to overcome the difficulties of this method by using a new identity for permanents of complex matrices in combination with a recently proved inequality for the characteristic function of the approximated distribution.
Keywords: approximation of permanents, characteristic function method, combinatorial central limit theorem, permanental identity, sampling without replacement.
@article{TVP_2022_67_1_a8,
     author = {B. Roos},
     title = {On the accuracy in a~combinatorial central limit theorem: the characteristic function method},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {150--175},
     year = {2022},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a8/}
}
TY  - JOUR
AU  - B. Roos
TI  - On the accuracy in a combinatorial central limit theorem: the characteristic function method
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 150
EP  - 175
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a8/
LA  - ru
ID  - TVP_2022_67_1_a8
ER  - 
%0 Journal Article
%A B. Roos
%T On the accuracy in a combinatorial central limit theorem: the characteristic function method
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 150-175
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a8/
%G ru
%F TVP_2022_67_1_a8
B. Roos. On the accuracy in a combinatorial central limit theorem: the characteristic function method. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 150-175. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a8/

[1] R. N. Bhattacharya, R. R. Rao, Normal approximation and asymptotic expansions, Classics Appl. Math., 64, Updated reprint of the 1986 ed., corr. ed. of the 1976 original, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010, xxii+316 pp. | DOI | MR | MR | Zbl | Zbl

[2] E. Bolthausen, “An estimate of the remainder in a combinatorial central limit theorem”, Z. Wahrsch. Verw. Gebiete, 66:3 (1984), 379–386 | DOI | MR | Zbl

[3] L. H. Y. Chen, Xiao Fang, “On the error bound in a combinatorial central limit theorem”, Bernoulli, 21:1 (2015), 335–359 | DOI | MR | Zbl

[4] L. H. Y. Chen, L. Goldstein, Qi-Man Shao, Normal approximation by Stein's method, Probab. Appl. (N.Y.), Springer, Heidelberg, 2011, xii+405 pp. | DOI | MR | Zbl

[5] Yuan Shih Chow, H. Teicher, Probability Theory. Independence, interchangeability, martingales, Springer Texts Statist., 3rd ed., Springer-Verlag, New York, 1997, xxii+488 pp. | DOI | MR | Zbl

[6] R. J. M. M. Does, “Berry–Esseen theorems for simple linear rank statistics under the null-hypothesis”, Ann. Probab., 10:4 (1982), 982–991 | DOI | MR | Zbl

[7] R. J. M. M. Does, “An Edgeworth expansion for simple linear rank statistics under the null-hypothesis”, Ann. Statist., 11:2 (1983), 607–624 | DOI | MR | Zbl

[8] C.-G. Esseen, “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl

[9] A. N. Frolov, “Esseen type bounds of the remainder in a combinatorial CLT”, J. Statist. Plann. Inference, 149 (2014), 90–97 | DOI | MR | Zbl

[10] L. Goldstein, “Berry–Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing”, J. Appl. Probab., 42:3 (2005), 661–683 | DOI | MR | Zbl

[11] L. Goldstein, “$L^1$ bounds in normal approximation”, Ann. Probab., 35:5 (2007), 1888–1930 | DOI | MR | Zbl

[12] J. Hájek, “Some extensions of the Wald–Wolfowitz–Noether theorem”, Ann. Math. Statist., 32:2 (1961), 506–523 | DOI | MR | Zbl

[13] J. Hájek, Z. Šidák, P. K. Sen, Theory of rank tests, Probab. Math. Statist., 2nd ed., Academic Press, Inc., San Diego, CA, 1999, xiv+435 pp. | DOI | MR | Zbl

[14] Soo-Thong Ho, L. H. Y. Chen, “An $L_{p}$ bound for the remainder in a combinatorial central limit theorem”, Ann. Probab., 6:2 (1978), 231–249 | DOI | MR | Zbl

[15] W. Hoeffding, “A combinatorial central limit theorem”, Ann. Math. Statist., 22:4 (1951), 558–566 | DOI | MR | Zbl

[16] T. Höglund, “Sampling from a finite population. A remainder term estimate”, Studia Sci. Math. Hungar., 11:1-2 (1976), 69–74 ; Scand. J. Statist., 5:1 (1978), 69–71 | MR | Zbl | MR | Zbl

[17] M. Hušková, “The rate of convergence of simple linear rank statistics under hypothesis and alternatives”, Ann. Statist., 5:4 (1977), 658–670 | DOI | MR | Zbl

[18] M. Hušková, “The Berry–Esseen theorem for rank statistics”, Comment. Math. Univ. Carolin., 20:3 (1979), 399–415 | MR | Zbl

[19] L. Mattner, J. Schulz, “On normal approximations to symmetric hypergeometric laws”, Trans. Amer. Math. Soc., 370:1 (2018), 727–748 | DOI | MR | Zbl

[20] D. S. Mitrinović, Analytic inequalities, In cooperation with P. M. Vasić, Grundlehren Math. Wiss., 165, Springer-Verlag, New York–Berlin, 1970, xii+400 pp. | DOI | MR | Zbl

[21] M. Motoo, “On the Hoeffding's combinatorial central limit theorem”, Ann. Inst. Statist. Math. Tokyo, 8 (1957), 145–154 | DOI | MR | Zbl

[22] H. Prawitz, “Ungleichungen für den absoluten Betrag einer charakteristischen Funktion”, Skand. Aktuarietidskr., 1973:1 (1973), 11–16 | DOI | MR | Zbl

[23] B. Roos, New inequalities for permanents and hafnians and some generalizations, 2020 (v1 – 2019), 34 pp., arXiv: 1906.06176

[24] B. Roos, “New permanent approximation inequalities via identities”, Lith. Math. J., 60:2 (2020), 248–275 | DOI | MR | Zbl

[25] W. Schneller, “Edgeworth expansions for linear rank statistics”, Ann. Statist., 17:3 (1989), 1103–1123 | DOI | MR | Zbl

[26] I. G. Shevtsova, “Ob absolyutnykh konstantakh v neravenstve Berri–Esseena i ego strukturnykh i neravnomernykh utochneniyakh”, Inform. i ee primen., 7:1 (2013), 124–125 | MR

[27] Le Van Thành, On the Berry–Esseen bound for a combinatorial central limit theorem, ViAsM13.45, Vietnam Institute for Advanced Study in Mathematics, 2013, 12 pp.

[28] W. R. van Zwet, “On the Edgeworth expansion for the simple linear rank statistic”, Nonparametric statistical inference (Budapest, 1980), v. 2, Colloq. Math. Soc. János Bolyai, 32, North-Holland, Amsterdam, 1982, 889–909 | MR | Zbl

[29] B. von Bahr, “Remainder term estimate in a combinatorial limit theorem”, Z. Wahrsch. Verw. Gebiete, 35:2 (1976), 131–139 | DOI | MR | Zbl

[30] A. Wald, J. Wolfowitz, “Statistical tests based on permutations of the observations”, Ann. Math. Statist., 15:4 (1944), 358–372 | DOI | MR | Zbl