Background driving distribution functions and series representations for log-gamma self-decomposable random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 134-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We identify the background driving distribution functions (BDDF) for self-decomposable distributions (random variables). For log-gamma variables and their background driving variables, we find their series representations. An innovation variable for Bessel-K distribution is given as a compound Poisson variable.
Mots-clés : self-decomposable distribution, Lévy process, log-gamma distribution.
Keywords: random integral, characteristic function, random series representation, compound Poisson measure
@article{TVP_2022_67_1_a7,
     author = {Z. J. Jurek},
     title = {Background driving distribution functions and series representations for log-gamma self-decomposable random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {134--149},
     year = {2022},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a7/}
}
TY  - JOUR
AU  - Z. J. Jurek
TI  - Background driving distribution functions and series representations for log-gamma self-decomposable random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 134
EP  - 149
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a7/
LA  - ru
ID  - TVP_2022_67_1_a7
ER  - 
%0 Journal Article
%A Z. J. Jurek
%T Background driving distribution functions and series representations for log-gamma self-decomposable random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 134-149
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a7/
%G ru
%F TVP_2022_67_1_a7
Z. J. Jurek. Background driving distribution functions and series representations for log-gamma self-decomposable random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 134-149. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a7/

[1] L. Bondesson, Generalized gamma convolutions and related classes of distributions and densities, Lect. Notes Stat., 76, Springer-Veralg, New York, 1992, viii+173 pp. | DOI | MR | Zbl

[2] R. C. Bradley. Z. J. Jurek, “Strong mixing and operator-selfdecomposability”, J. Theoret. Probab., 29:1 (2016), 292–306 | DOI | MR | Zbl

[3] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xxvi+302 pp. | MR | MR | Zbl | Zbl

[4] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+626 pp. | MR | MR | Zbl | Zbl

[5] J. Gil-Pelaez, “Note on the inversion theorem”, Biometrica, 38:3-4 (1951), 481–482 | DOI | MR | Zbl

[6] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl

[7] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 5th ed., Academic Press, Inc., Boston, MA, 1994, xlviii+1204 pp. | MR | MR | Zbl | Zbl

[8] B. Hosseini, “Two Metropolis–Hastings algorithms for posterior measures with non-Gaussian priors in infinite dimensions”, SIAM/ASA J. Uncertain. Quantif., 7:4 (2019), 1185–1223 ; (2019 (v1 – 2018)), 34 pp., arXiv: 1804.07833 | DOI | MR | Zbl

[9] M. Jeanblanc, J. Pitman, M. Yor, “Self-similar processes with independent increments associated with Lévy and Bessel processes”, Stochastic Process. Appl., 100:1-2 (2002), 223–231 | DOI | MR | Zbl

[10] N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, v. 1, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1994, xxii+756 pp. | MR | Zbl

[11] Z. J. Jurek, “Series of independent exponential random variables”, Probability theory and mathematical statistics (Tokyo, 1995), World Sci. Publ., River Edge, NJ, 1996, 174–182 | MR | Zbl

[12] Z. J. Jurek, “Selfdecomposability: an exception or a rule?”, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 51:1 (1997), 93–107 | MR | Zbl

[13] Z. J. Jurek, “A note on gamma random variables and Dirichlet series”, Statist. Probab. Lett., 49:4 (2000), 387–392 | DOI | MR | Zbl

[14] Z. J. Jurek, “Remarks on the selfdecomposability and new examples”, Demonstratio Math., 34:2 (2001), 241–250 | MR | Zbl

[15] Z. J. Jurek, J. D. Mason, Operator-limit distributions in probability theory, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1993, xvi+292 pp. | MR | Zbl

[16] Z. J. Jurek, W. Vervaat, “An integral representation for selfdecomposable Banach space valued random variables”, Z. Wahrsch. Verw. Gebiete, 62:2 (1983), 247–262 ; Report 8121, Katholieke Univ., Nijmegen, The Netherlands, 1981, 25 pp. | DOI | MR | Zbl

[17] A. T. Lawrance, “The innovation distribution of a gamma distributed autoregressive process”, Scand. J. Statist., 9:4 (1982), 234–236 | Zbl

[18] M. Loève, Probability theory, 3rd ed., D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1963, xvi+685 pp. | MR | Zbl

[19] D. N. Shanbhag, D. Pestana, M. Sreehari, “Some further results in infinite divisibility”, Math. Proc. Cambridge Philos. Soc., 82:2 (1977), 289–295 | DOI | MR | Zbl

[20] N. G. Ushakov, Selected topics in characteristic functions, Mod. Probab. Stat., VSP, Utrecht, 1999, x+355 pp. | DOI | MR | Zbl

[21] J. G. Wendel, “The non-absolute convergence of Gil-Pelaez' inversion integral”, Ann. Math. Statist., 32 (1961), 338–339 | DOI | MR | Zbl

[22] E. T. Whittaker, G. N. Watson, A course of modern analysis, 3th ed., Cambridge Univ. Press, Cambridge, 1920, iv+608 pp. | Zbl | Zbl