Asymptotics of the persistence exponent of integrated fractional Brownian motion and fractionally integrated Brownian motion
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 100-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the persistence probability for the integrated fractional Brownian motion and the fractionally integrated Brownian motion with parameter $H$, respectively. For the integrated fractional Brownian motion, we discuss a conjecture of Molchan and Khokhlov and determine the asymptotic behavior of the persistence exponent as $H\to 0$ and $H\to 1$, which is in accordance with the conjecture. For the fractionally integrated Brownian motion, also called the Riemann–Liouville process, we find the asymptotic behavior of the persistence exponent as $H\to 0$.
Keywords: Gaussian process, integrated fractional Brownian motion, one-sided exit problem, stationary process, zero crossing.
Mots-clés : persistence, Riemann–Liouville process
@article{TVP_2022_67_1_a5,
     author = {F. Aurzada and M. Kilian},
     title = {Asymptotics of the persistence exponent of integrated fractional {Brownian} motion and fractionally integrated {Brownian} motion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {100--114},
     year = {2022},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a5/}
}
TY  - JOUR
AU  - F. Aurzada
AU  - M. Kilian
TI  - Asymptotics of the persistence exponent of integrated fractional Brownian motion and fractionally integrated Brownian motion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 100
EP  - 114
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a5/
LA  - ru
ID  - TVP_2022_67_1_a5
ER  - 
%0 Journal Article
%A F. Aurzada
%A M. Kilian
%T Asymptotics of the persistence exponent of integrated fractional Brownian motion and fractionally integrated Brownian motion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 100-114
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a5/
%G ru
%F TVP_2022_67_1_a5
F. Aurzada; M. Kilian. Asymptotics of the persistence exponent of integrated fractional Brownian motion and fractionally integrated Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 100-114. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a5/

[1] N. H. Abel, “Untersuchungen über die Reihe: $1+\frac{m}{1}x+\frac{m\cdot(m-1)}{1\cdot2}\cdot x^2+\frac{m\cdot(m-1)\cdot(m-2)}{1\cdot2\cdot3}\cdot x^3+\dots\,\mathrm{u.s.w.}$”, J. Reine Angew. Math., 1 (1826), 311–339 | DOI | MR | Zbl

[2] F. Aurzada, “On the one-sided exit problem for fractional Brownian motion”, Electron. Commun. Probab., 16 (2011), 392–404 | DOI | MR | Zbl

[3] F. Aurzada, S. Dereich, “Universality of the asymptotics of the one-sided exit problem for integrated processes”, Ann. Inst. Henri Poincaré Probab. Stat., 49:1 (2013), 236–251 | DOI | MR | Zbl

[4] F. Aurzada, A. Devulder, N. Guillotin-Plantard, F. Pène, “Random walks and branching processes in correlated Gaussian environment”, J. Stat. Phys., 166:1 (2017), 1–23 | DOI | MR | Zbl

[5] F. Aurzada, N. Guillotin-Plantard, F. Pène, “Persistence probabilities for stationary increment processes”, Stochastic Process. Appl., 128:5 (2018), 1750–1771 | DOI | MR | Zbl

[6] F. Aurzada, S. Mukherjee, Persistence probabilities of weighted sums of stationary Gaussian sequences, 2020, 31 pp., arXiv: 2003.01192

[7] F. Aurzada, T. Simon, “Persistence probabilities and exponents”, Lévy matters V, Lecture Notes in Math., 2149, Springer, Cham, 2015, 183–224 | DOI | MR | Zbl

[8] A. J. Bray, S. N. Majumdar, G. Schehr, “Persistence and first-passage properties in nonequilibrium systems”, Adv. Phys., 62:3 (2013), 225–361 | DOI

[9] A. Dembo, S. Mukherjee, “No zero-crossings for random polynomials and the heat equation”, Ann. Probab., 43:1 (2015), 85–118 | DOI | MR | Zbl

[10] A. Dembo, S. Mukherjee, “Persistence of Gaussian processes: non-summable correlations”, Probab. Theory Related Fields, 169:3-4 (2017), 1007–1039 | DOI | MR | Zbl

[11] M. Goldman, “On the first passage of the integrated Wiener process”, Ann. Math. Statist., 42:6 (1971), 2150–2155 | DOI | MR | Zbl

[12] Y. Isozaki, S. Watanabe, “An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai's estimates for the integral of Brownian motion”, Proc. Japan Acad. Ser. A Math. Sci., 70:9 (1994), 271–276 | DOI | MR | Zbl

[13] S. C. Lim, C. H. Eab, “Some fractional and multifractional Gaussian processes: a brief introduction”, Analysis of fractional stochastic processes, Int. J. Modern Phys. Conf. Ser., 36, World Sci. Publ., Hackensack, NJ, 2015, 1560001, 14 pp. | DOI | MR | Zbl

[14] Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Math., 1929, Springer-Verlag, Berlin, 2008, xviii+393 pp. | DOI | MR | Zbl

[15] G. M. Molchan, “Maximum of a fractional Brownian motion: probabilities of small values”, Comm. Math. Phys., 205:1 (1999), 97–111 | DOI | MR | Zbl

[16] G. Molchan, “Unilateral small deviations of processes related to the fractional Brownian motion”, Stochastic Process. Appl., 118:11 (2008), 2085–2097 | DOI | MR | Zbl

[17] G. Molchan, “Survival exponents for some Gaussian processes”, Int. J. Stoch. Anal., 2012 (2012), 137271, 20 pp. | DOI | MR | Zbl

[18] G. Molchan, “The inviscid Burgers equation with fractional Brownian initial data: the dimension of regular Lagrangian points”, J. Stat. Phys., 167:6 (2017), 1546–1554 | DOI | MR | Zbl

[19] G. Molchan, Integrated fractional Brownian motion: persistence probabilities and their estimates, 2018, 15 pp., arXiv: 1806.04949

[20] G. Molchan, A. Khokhlov, “Small values of the maximum for the integral of fractional Brownian motion”, J. Stat. Phys., 114:3-4 (2004), 923–946 | DOI | MR | Zbl

[21] M. Poplavskyi, G. Schehr, “Exact persistence exponent for the $2D$-diffusion equation and related Kac polynomials”, Phys. Rev. Lett., 121 (2018), 150601 | DOI

[22] Zhen-Su She, E. Aurell, U. Frisch, “The inviscid Burgers equation with initial data of Brownian type”, Comm. Math. Phys., 148:3 (1992), 623–641 | DOI | MR | Zbl

[23] Ya. G. Sinai, “Distribution of some functionals of the integral of a random walk”, Theoret. and Math. Phys., 90:3 (1992), 219–241 | DOI | MR | Zbl