An analogue of the Feynman–Kac formula for a high-order operator
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 81-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we construct a probabilistic approximation of the evolution operator $\exp\bigl(t\bigl({\frac{(-1)^{m+1}}{(2m)!}\,\frac{d^{2m}}{dx^{2m}}+V}\bigr)\bigr)$ in the form of expectations of functionals of a point random field. This approximation can be considered as a generalization of the Feynman–Kac formula to the case of a differential equation of order $2m$.
Mots-clés : evolution equations, Feynman–Kac formula.
Keywords: Poisson random measures
@article{TVP_2022_67_1_a4,
     author = {M. V. Platonova},
     title = {An analogue of the {Feynman{\textendash}Kac} formula for a~high-order operator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {81--99},
     year = {2022},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a4/}
}
TY  - JOUR
AU  - M. V. Platonova
TI  - An analogue of the Feynman–Kac formula for a high-order operator
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 81
EP  - 99
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a4/
LA  - ru
ID  - TVP_2022_67_1_a4
ER  - 
%0 Journal Article
%A M. V. Platonova
%T An analogue of the Feynman–Kac formula for a high-order operator
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 81-99
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a4/
%G ru
%F TVP_2022_67_1_a4
M. V. Platonova. An analogue of the Feynman–Kac formula for a high-order operator. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 81-99. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a4/

[1] A. D. Wentzell, A course in the theory of stochastic processes, McGraw-Hill International Book Co., New York, 1981, x+304 pp. | MR | MR | Zbl

[2] N. Dunford, J. T. Schwartz, Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, xiv+858 pp. | MR | MR | Zbl

[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Probabilistic approximation of the evolution operator”, Funct. Anal. Appl., 52:2 (2018), 101–112 | DOI | DOI | MR | Zbl

[4] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | DOI | MR | MR | Zbl | Zbl

[5] J. F. C. Kingman, Poisson processes, Oxford Stud. Probab., 3, The Clarendon Press, Oxford Univ. Press, New York, 1993, viii+104 pp. | MR | Zbl

[6] M. V. Platonova, “A probabilistic representation of solution to the Cauchy problem for evolution equation with differential operator of order greater than 2”, J. Math. Sci. (N.Y.), 229:6 (2018), 744–755 | DOI | MR | Zbl

[7] M. V. Platonova, Approksimatsiya resheniya zadachi Koshi dlya evolyutsionnykh uravnenii s operatorom Rimana–Liuvillya matematicheskimi ozhidaniyami funktsionalov ot stokhasticheskikh protsessov, Diss. ... kand. fiz.-matem. nauk, POMI RAN, SPb., 2017, 132 pp. https://www.pdmi.ras.ru/pdmi/system/files/dissertations/full_thesis.pdf

[8] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975, xv+361 pp. | MR | MR | Zbl

[9] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva i dr., Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, L., 1981, 200 pp. | Zbl

[10] L. Beghin, K. J. Hochberg, E. Orsingher, “Conditional maximal distributions of processes related to higher-order heat-type equations”, Stochastic Process. Appl., 85:2 (2000), 209–223 | DOI | MR | Zbl

[11] L. Debbi, “Explicit solutions of some fractional partial differential equations via stable subordinators”, J. Appl. Math. Stoch. Anal., 2006 (2006), 93502, 18 pp. | DOI | MR | Zbl

[12] T. Funaki, “Probabilistic construction of the solution of some higher order parabolic differential equation”, Proc. Japan Acad. Ser. A Math. Sci., 55:5 (1979), 176–179 | DOI | MR | Zbl

[13] {\vrule width0pt height9ptV. Yu. Krylov}, “Some properties of the distribution corresponding to the equation $\partial u/\partial t = (-1)^{q+1}\partial^{2q}u/\partial x^{2q}$”, Soviet Math. Dokl., 1 (1960), 760–763 | MR | Zbl

[14] A. Lachal, “Distributions of sojourn time, maximum and minimum for pseudo-processes governed by higher-order heat-type equations”, Electron. J. Probab., 8 (2003), 20, 53 pp. | DOI | MR | Zbl

[15] A. Lachal, “From pseudorandom walk to pseudo-Brownian motion: first exit time from a one-sided or a two-sided interval”, Int. J. Stoch. Anal., 2014 (2014), 520136, 49 pp. | DOI | MR | Zbl

[16] S. Mazzucchi, Mathematical Feynman path integrals and applications, World Sci. Publ., Hackensack, NJ, 2009, viii+216 pp. | DOI | MR | Zbl

[17] S. Mazzucchi, “Probabilistic representations for the solution of higher order differential equations”, Int. J. Partial Differ. Equ., 2013 (2013), 297857, 7 pp. | DOI | Zbl

[18] E. Orsingher, B. Toaldo, “Pseudoprocesses related to space-fractional higher-order heat-type equations”, Stoch. Anal. Appl., 32:4 (2014), 619–641 | DOI | MR | Zbl