An analogue of the Feynman--Kac formula for a~high-order operator
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 81-99
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we construct a probabilistic approximation of the evolution
operator
$\exp\bigl(t\bigl({\frac{(-1)^{m+1}}{(2m)!}\,\frac{d^{2m}}{dx^{2m}}+V}\bigr)\bigr)$
in the form of expectations of functionals of a point random field. This
approximation can be considered as a generalization of the Feynman–Kac
formula to the case of a differential equation of order $2m$.
Mots-clés :
evolution equations, Feynman–Kac formula.
Keywords: Poisson random measures
Keywords: Poisson random measures
@article{TVP_2022_67_1_a4,
author = {M. V. Platonova},
title = {An analogue of the {Feynman--Kac} formula for a~high-order operator},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {81--99},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a4/}
}
M. V. Platonova. An analogue of the Feynman--Kac formula for a~high-order operator. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 81-99. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a4/