On accompanying measures and asymptotic expansions in the B. V. Gnedenko limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 57-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a sequence of accompanying laws in the B. V. Gnedenko limit theorem for maxima of independent random variables with distributions lying in the Gumbel max domain of attraction. We show that this sequence provides a power-law convergence rate, whereas the Gumbel distribution provides only the logarithmic rate. As examples, we consider in detail the classes of Weibull and log-Weibull type distributions. For the entire Gumbel max domain of attraction, we propose a scale of classes of distributions that includes these two classes as a starting point.
Keywords: Gnedenko–Fisher–Tippet theorem, accompanying law.
Mots-clés : convergence rate, correction term
@article{TVP_2022_67_1_a3,
     author = {V. I. Piterbarg and Yu. A. Shcherbakova},
     title = {On accompanying measures and asymptotic expansions in the {B.~V.~Gnedenko} limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {57--80},
     year = {2022},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a3/}
}
TY  - JOUR
AU  - V. I. Piterbarg
AU  - Yu. A. Shcherbakova
TI  - On accompanying measures and asymptotic expansions in the B. V. Gnedenko limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 57
EP  - 80
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a3/
LA  - ru
ID  - TVP_2022_67_1_a3
ER  - 
%0 Journal Article
%A V. I. Piterbarg
%A Yu. A. Shcherbakova
%T On accompanying measures and asymptotic expansions in the B. V. Gnedenko limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 57-80
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a3/
%G ru
%F TVP_2022_67_1_a3
V. I. Piterbarg; Yu. A. Shcherbakova. On accompanying measures and asymptotic expansions in the B. V. Gnedenko limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 57-80. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a3/

[1] B. V. Gnedenko, “Limit theorems for the maximal term of a variational series”, C. R. Acad. Sci. URSS, 32 (1941), 7–9 | MR | Zbl

[2] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl

[3] I. A. Ibragimov, E. L. Presman, “On the rate of approach of the distributions of sums of independent random variables to accompanying distributions”, Theory Probab. Appl., 18:4 (1974), 713–727 | DOI | MR | Zbl

[4] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | DOI | MR | MR | Zbl | Zbl

[5] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press, London, 2015, xi+167 pp. | Zbl

[6] I. V. Rodionov, “On discrimination between classes of distribution tails”, Probl. Inf. Transm., 54:2 (2018), 124–138 | DOI | MR | Zbl

[7] I. V. Rodionov, “Discrimination of close hypotheses about the distribution tails using higher order statistics”, Theory Probab. Appl., 63:3 (2019), 364–380 | DOI | DOI | MR | Zbl

[8] V. V. Senatov, “On the real accuracy of approximation in the central limit theorem”, Siberian Math. J., 52:4 (2011), 727–746 | DOI | MR | Zbl

[9] V. V. Senatov, Tsentralnaya predelnaya teorema: tochnost approksimatsii i asimptoticheskie razlozheniya, Knizhnyi dom “LIBROKOM”, M., 2009, 352 pp.

[10] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+626 pp. | MR | MR | Zbl | Zbl

[11] I. Fraga Alves, L. de Haan, Tao Lin, “Third order extended regular variation”, Publ. Inst. Math. (Beograd) (N.S.), 80:94 (2006), 109–120 | DOI | MR | Zbl

[12] Shihong Cheng, Changguo Jiang, “The Edgeworth expansion for distributions of extreme values”, Sci. China Ser. A, 44:4 (2001), 427–437 | DOI | MR | Zbl

[13] A. A. Balkema, L. de Haan, “On R. von Mises' condition for the domain of attraction of $\exp(-e^{-x})$”, Ann. Math. Statist., 43:4 (1972), 1352–1354 | DOI | MR | Zbl

[14] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl

[15] L. Clerjaud, 41èmes Journées de Statistique (SFdS, Bordeaux, 2009), 2009, 7 pp. https://hal.inria.fr/inria-00386769/document

[16] H. Drees, L. de Haan, D. Li, “On large deviations for extremes”, Statist. Probab. Lett., 64:1 (2003), 51–62 | DOI | MR | Zbl

[17] H. Drees, L. de Haan, D. Li, “Approximations to the tail empirical distribution function with application to testing extreme value conditions”, J. Statist. Plann. Inference, 136:10 (2006), 3498–3538 | DOI | MR | Zbl

[18] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Appl. Math. (N.Y.), 33, Springer-Verlag, Berlin, 1997, xvi+645 pp. | DOI | MR | Zbl

[19] L. de Haan, A. Ferreira, Extreme value theory. An introduction, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006, xviii+417 pp. | DOI | MR | Zbl

[20] L. de Haan, “Slow variation and characterization of domains of attraction”, Statistical extremes and applications, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 131, Reidel, Dordrecht, 1984, 31–48 | DOI | MR | Zbl

[21] A. Gasull, J. A. López-Salcedo, F. Utzet, “Maxima of gamma random variables and other Weibull-like distributions and the Lambert $\mathbf{W}$ function”, TEST, 24:4 (2015), 714–733 | DOI | MR | Zbl

[22] B. Gnedenko, “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. of Math. (2), 44:3 (1943), 423–453 | DOI | MR | Zbl

[23] Fuming Lin, Xinhua Zhang, Zuoxiang Peng, Yingying Jiang, “On the rate of convergence of STSD extremes”, Comm. Statist. Theory Methods, 40:10 (2011), 1795–1806 | DOI | MR | Zbl

[24] P. Hall, “On the rate of convergence of normal extremes”, J. Appl. Probab., 16:2 (1979), 433–439 | DOI | MR | Zbl

[25] W. J. Hall, J. A. Wellner, “The rate of convergence in law of the maximum of an exponential sample”, Statist. Neerlandica, 33:3 (1979), 151–154 | DOI | MR | Zbl

[26] Chuandi Liu, Bao Liu, “Convergence rate of extremes from Maxwell sample”, J. Inequal. Appl., 2013 (2013), 477, 11 pp. | DOI | MR | Zbl

[27] S. Y. Novak, Extreme value methods with applications to finance, Monogr. Statist. Appl. Probab., 122, CRC Press, Boca Raton, FL, 2012, xxvi+373 pp. | MR | Zbl

[28] F. W. J. Olver, Asymptotics and special functions, Comput. Sci. Appl. Math., Academic Press, New York–London, 1974, xvi+572 pp. | MR | MR | Zbl | Zbl

[29] Zuoxiang Peng, S. Nadarajah, Fuming Lin, “Convergence rate of extremes for the general error distribution”, J. Appl. Probab., 47:3 (2010), 668–679 | DOI | MR | Zbl

[30] S. I. Resnick, Extreme values, regular variation, and point processes, Appl. Probab. Ser. Appl. Probab. Trust, 4, Springer-Verlag, New York–Berlin–Heidelberg, 1987, xii+320 pp. | DOI | MR | Zbl

[31] S. Resnick, L. de Haan, “Second-order regular variation and rates of convergence in extreme-value theory”, Ann. Probab., 24:1 (1996), 97–124 | DOI | MR | Zbl

[32] Xiao Qian Wang, Shi Hong Cheng, “General regular variation of $n$-th order and the 2nd order Edgeworth expansion of the extreme value distribution. I”, Acta Math. Sin. (Engl. Ser.), 21:5 (2005), 1121–1130 ; II, 22:1 (2006), 27–40 | DOI | MR | Zbl | DOI | MR | Zbl