Mots-clés : convergence rate, correction term
@article{TVP_2022_67_1_a3,
author = {V. I. Piterbarg and Yu. A. Shcherbakova},
title = {On accompanying measures and asymptotic expansions in the {B.~V.~Gnedenko} limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {57--80},
year = {2022},
volume = {67},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a3/}
}
TY - JOUR AU - V. I. Piterbarg AU - Yu. A. Shcherbakova TI - On accompanying measures and asymptotic expansions in the B. V. Gnedenko limit theorem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 57 EP - 80 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a3/ LA - ru ID - TVP_2022_67_1_a3 ER -
V. I. Piterbarg; Yu. A. Shcherbakova. On accompanying measures and asymptotic expansions in the B. V. Gnedenko limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 57-80. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a3/
[1] B. V. Gnedenko, “Limit theorems for the maximal term of a variational series”, C. R. Acad. Sci. URSS, 32 (1941), 7–9 | MR | Zbl
[2] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl
[3] I. A. Ibragimov, E. L. Presman, “On the rate of approach of the distributions of sums of independent random variables to accompanying distributions”, Theory Probab. Appl., 18:4 (1974), 713–727 | DOI | MR | Zbl
[4] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | DOI | MR | MR | Zbl | Zbl
[5] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press, London, 2015, xi+167 pp. | Zbl
[6] I. V. Rodionov, “On discrimination between classes of distribution tails”, Probl. Inf. Transm., 54:2 (2018), 124–138 | DOI | MR | Zbl
[7] I. V. Rodionov, “Discrimination of close hypotheses about the distribution tails using higher order statistics”, Theory Probab. Appl., 63:3 (2019), 364–380 | DOI | DOI | MR | Zbl
[8] V. V. Senatov, “On the real accuracy of approximation in the central limit theorem”, Siberian Math. J., 52:4 (2011), 727–746 | DOI | MR | Zbl
[9] V. V. Senatov, Tsentralnaya predelnaya teorema: tochnost approksimatsii i asimptoticheskie razlozheniya, Knizhnyi dom “LIBROKOM”, M., 2009, 352 pp.
[10] W. Feller, An introduction to probability theory and its applications, v. II, John Wiley Sons, Inc., New York–London–Sydney, 1966, xviii+626 pp. | MR | MR | Zbl | Zbl
[11] I. Fraga Alves, L. de Haan, Tao Lin, “Third order extended regular variation”, Publ. Inst. Math. (Beograd) (N.S.), 80:94 (2006), 109–120 | DOI | MR | Zbl
[12] Shihong Cheng, Changguo Jiang, “The Edgeworth expansion for distributions of extreme values”, Sci. China Ser. A, 44:4 (2001), 427–437 | DOI | MR | Zbl
[13] A. A. Balkema, L. de Haan, “On R. von Mises' condition for the domain of attraction of $\exp(-e^{-x})$”, Ann. Math. Statist., 43:4 (1972), 1352–1354 | DOI | MR | Zbl
[14] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl
[15] L. Clerjaud, 41èmes Journées de Statistique (SFdS, Bordeaux, 2009), 2009, 7 pp. https://hal.inria.fr/inria-00386769/document
[16] H. Drees, L. de Haan, D. Li, “On large deviations for extremes”, Statist. Probab. Lett., 64:1 (2003), 51–62 | DOI | MR | Zbl
[17] H. Drees, L. de Haan, D. Li, “Approximations to the tail empirical distribution function with application to testing extreme value conditions”, J. Statist. Plann. Inference, 136:10 (2006), 3498–3538 | DOI | MR | Zbl
[18] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Appl. Math. (N.Y.), 33, Springer-Verlag, Berlin, 1997, xvi+645 pp. | DOI | MR | Zbl
[19] L. de Haan, A. Ferreira, Extreme value theory. An introduction, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006, xviii+417 pp. | DOI | MR | Zbl
[20] L. de Haan, “Slow variation and characterization of domains of attraction”, Statistical extremes and applications, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 131, Reidel, Dordrecht, 1984, 31–48 | DOI | MR | Zbl
[21] A. Gasull, J. A. López-Salcedo, F. Utzet, “Maxima of gamma random variables and other Weibull-like distributions and the Lambert $\mathbf{W}$ function”, TEST, 24:4 (2015), 714–733 | DOI | MR | Zbl
[22] B. Gnedenko, “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. of Math. (2), 44:3 (1943), 423–453 | DOI | MR | Zbl
[23] Fuming Lin, Xinhua Zhang, Zuoxiang Peng, Yingying Jiang, “On the rate of convergence of STSD extremes”, Comm. Statist. Theory Methods, 40:10 (2011), 1795–1806 | DOI | MR | Zbl
[24] P. Hall, “On the rate of convergence of normal extremes”, J. Appl. Probab., 16:2 (1979), 433–439 | DOI | MR | Zbl
[25] W. J. Hall, J. A. Wellner, “The rate of convergence in law of the maximum of an exponential sample”, Statist. Neerlandica, 33:3 (1979), 151–154 | DOI | MR | Zbl
[26] Chuandi Liu, Bao Liu, “Convergence rate of extremes from Maxwell sample”, J. Inequal. Appl., 2013 (2013), 477, 11 pp. | DOI | MR | Zbl
[27] S. Y. Novak, Extreme value methods with applications to finance, Monogr. Statist. Appl. Probab., 122, CRC Press, Boca Raton, FL, 2012, xxvi+373 pp. | MR | Zbl
[28] F. W. J. Olver, Asymptotics and special functions, Comput. Sci. Appl. Math., Academic Press, New York–London, 1974, xvi+572 pp. | MR | MR | Zbl | Zbl
[29] Zuoxiang Peng, S. Nadarajah, Fuming Lin, “Convergence rate of extremes for the general error distribution”, J. Appl. Probab., 47:3 (2010), 668–679 | DOI | MR | Zbl
[30] S. I. Resnick, Extreme values, regular variation, and point processes, Appl. Probab. Ser. Appl. Probab. Trust, 4, Springer-Verlag, New York–Berlin–Heidelberg, 1987, xii+320 pp. | DOI | MR | Zbl
[31] S. Resnick, L. de Haan, “Second-order regular variation and rates of convergence in extreme-value theory”, Ann. Probab., 24:1 (1996), 97–124 | DOI | MR | Zbl
[32] Xiao Qian Wang, Shi Hong Cheng, “General regular variation of $n$-th order and the 2nd order Edgeworth expansion of the extreme value distribution. I”, Acta Math. Sin. (Engl. Ser.), 21:5 (2005), 1121–1130 ; II, 22:1 (2006), 27–40 | DOI | MR | Zbl | DOI | MR | Zbl