@article{TVP_2022_67_1_a2,
author = {E. S. Palamarchuk},
title = {On optimal stochastic linear quadratic control with inversely proportional time-weighting in the cost},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {37--56},
year = {2022},
volume = {67},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a2/}
}
TY - JOUR AU - E. S. Palamarchuk TI - On optimal stochastic linear quadratic control with inversely proportional time-weighting in the cost JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 37 EP - 56 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a2/ LA - ru ID - TVP_2022_67_1_a2 ER -
E. S. Palamarchuk. On optimal stochastic linear quadratic control with inversely proportional time-weighting in the cost. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 37-56. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a2/
[1] D. Chakraborty, “Persistence of a Brownian particle in a time-dependent potential”, Phys. Rev. E, 85:5 (2012), 051101 | DOI
[2] F. Lillo, R. N. Mantegna, “Drift-controlled anomalous diffusion: a solvable Gaussian model”, Phys. Rev. E, 61:5 (2000), R4675 | DOI
[3] Jae-Hyung Jeon, A. V. Chechkin, R. Metzler, “Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion”, Phys. Chem. Chem. Phys., 16:30 (2014), 15811–15817 | DOI
[4] S. C. Lim, S. V. Muniandy, “Self-similar Gaussian processes for modeling anomalous diffusion”, Phys. Rev. E, 66:2 (2002), 021114 | DOI
[5] Ruzong Fan, Bin Zhu, Yuedong Wang, “Stochastic dynamic models and Chebyshev splines”, Canad. J. Statist., 42:4 (2014), 610–634 | DOI | MR | Zbl
[6] M. Lefebvre, P. Whittle, “Survival optimization for a dynamic system”, Ann. Sci. Math. Québec, 12:1 (1988), 101–119 | MR | Zbl
[7] Jiatu Cai, M. Rosenbaum, P. Tankov, “Asymptotic lower bounds for optimal tracking: a linear programming approach”, Ann. Appl. Probab., 27:4 (2017), 2455–2514 | DOI | MR | Zbl
[8] E. S. Palamarchuk, “Stabilization of linear stochastic systems with a discount: modeling and estimation of the long-term effects from the application of optimal control strategies”, Math. Models Comput. Simul., 7:4 (2015), 381–388 | DOI | MR | Zbl
[9] F. Man, H. Smith, “Design of linear regulators optimal for time-multiplied performance indices”, IEEE Trans. Automatic Control, AC-14:5 (1969), 527–529 | DOI | MR
[10] E. S. Palamarchuk, “Analysis of the asymptotic behavior of the solution to a linear stochastic differential equation with subexponentially stable matrix and its application to a control problem”, Theory Probab. Appl., 62:4 (2018), 522–533 | DOI | DOI | MR | Zbl
[11] A. Locatelli, Optimal control. An introduction, Birkhäuser Verlag, Basel, 2001, x+294 pp. | MR | Zbl
[12] H. Kwakernaak, R. Sivan, Linear optimal control systems, Wiley-Interscience [John Wiley Sons], New York–London–Sydney, xxv+575 pp. | MR | Zbl
[13] L. Ya. Adrianova, Introduction to linear systems of differential equations, Transl. Math. Monogr., 146, Amer. Math. Soc., Providence, RI, 1995, x+204 pp. | DOI | MR | MR | Zbl
[14] M. H. A. Davis, Linear estimation and stochastic control, Chapman and Hall Math. Ser., Chapman and Hall, London; Halsted Press [John Wiley Sons], New York, 1977, xii+224 pp. | MR | MR | Zbl | Zbl
[15] H. Cramér, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley Sons, Inc., New York–London–Sydney, 1967, xii+348 pp. | MR | Zbl | Zbl
[16] B. Øksendal, Stochastic differential equations. An introduction with applications, Universitext, 6th ed., Springer-Verlag, Berlin, 2003, xxiv+360 pp. | DOI | MR | Zbl
[17] E. S. Palamarchuk, “Optimal controller for a nonautonomous linear stochastic system with a two-sided cost functional”, Autom. Remote Control, 81:1 (2020), 53–63 | DOI | DOI | MR | Zbl
[18] E. S. Palamarchuk, “Optimization of the superstable linear stochastic system applied to the model with extremely impatient agents”, Autom. Remote Control, 79:3 (2018), 439–450 | DOI | MR | Zbl
[19] P. Dai Pra, G. B. Di Masi, B. Trivellato, “Pathwise optimality in stochastic control”, SIAM J. Control Optim., 39:5 (2000), 1540–1557 | DOI | MR | Zbl
[20] T. A. Belkina, Yu. M. Kabanov, E. L. Presman, “On a stochastic optimality of the feedback control in the LQG-problem”, Theory Probab. Appl., 48:4 (2004), 592–603 | DOI | DOI | MR | Zbl
[21] E. S. Palamarchuk, “Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process”, Comput. Math. Math. Phys., 54:1 (2014), 83–96 | DOI | DOI | MR | Zbl
[22] E. S. Palamarchuk, “On upper functions for integral quadratic functionals based on time-varying Ornstein–Uhlenbeck process”, Theory Probab. Appl., 65:1 (2020), 17–31 | DOI | DOI | MR | Zbl
[23] E. S. Palamarchuk, “Time invariance of optimal control in a stochastic linear controller design with dynamic scaling of coefficients”, J. Comput. Syst. Sci. Int., 60:2 (2021), 202–212 | DOI | DOI | Zbl