On Senatov moments in asymptotic expansions in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 193-198

Voir la notice de l'article provenant de la source Math-Net.Ru

Representations are put forward for the moments and the truncated Senatov quasi-moments of normalized sums of random variables (r.v.'s) in terms of the Senatov moments of the original distribution. These representations make possible the direct transition from new asymptotic expansions in the central limit theorem to Gram–Charlier type expansions and are applied in the new proof of formulas for the convergence rate of these moments.
Keywords: central limit theorem, asymptotic expansions, Edgeworth–Cramér expansions, Gram–Charlier expansions, Senatov moments, Senatov quasi-moments.
@article{TVP_2022_67_1_a11,
     author = {V. N. Sobolev and A. E. Kondratenko},
     title = {On {Senatov} moments in asymptotic expansions in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {193--198},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/}
}
TY  - JOUR
AU  - V. N. Sobolev
AU  - A. E. Kondratenko
TI  - On Senatov moments in asymptotic expansions in the central limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 193
EP  - 198
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/
LA  - ru
ID  - TVP_2022_67_1_a11
ER  - 
%0 Journal Article
%A V. N. Sobolev
%A A. E. Kondratenko
%T On Senatov moments in asymptotic expansions in the central limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 193-198
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/
%G ru
%F TVP_2022_67_1_a11
V. N. Sobolev; A. E. Kondratenko. On Senatov moments in asymptotic expansions in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 193-198. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/