On Senatov moments in asymptotic expansions in the central limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 193-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Representations are put forward for the moments and the truncated Senatov quasi-moments of normalized sums of random variables (r.v.'s) in terms of the Senatov moments of the original distribution. These representations make possible the direct transition from new asymptotic expansions in the central limit theorem to Gram–Charlier type expansions and are applied in the new proof of formulas for the convergence rate of these moments.
Keywords: central limit theorem, asymptotic expansions, Edgeworth–Cramér expansions, Gram–Charlier expansions, Senatov moments, Senatov quasi-moments.
@article{TVP_2022_67_1_a11,
     author = {V. N. Sobolev and A. E. Kondratenko},
     title = {On {Senatov} moments in asymptotic expansions in the central limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {193--198},
     year = {2022},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/}
}
TY  - JOUR
AU  - V. N. Sobolev
AU  - A. E. Kondratenko
TI  - On Senatov moments in asymptotic expansions in the central limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 193
EP  - 198
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/
LA  - ru
ID  - TVP_2022_67_1_a11
ER  - 
%0 Journal Article
%A V. N. Sobolev
%A A. E. Kondratenko
%T On Senatov moments in asymptotic expansions in the central limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 193-198
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/
%G ru
%F TVP_2022_67_1_a11
V. N. Sobolev; A. E. Kondratenko. On Senatov moments in asymptotic expansions in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 193-198. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/

[1] H. Cramér, “On the composition of elementary errors. I. Mathematical deductions”, Scand. Actuar. J., 1928:1 (1928), 13–74 ; II. Statistical applications, 141–180 | DOI | Zbl | DOI

[2] C.-G. Esseen, “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl

[3] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl

[4] A. E. Kondratenko, “The relation between a rate of convergence of moments of normed sums and the Chebyshev–Hermite models”, Theory Probab. Appl., 46:2 (2002), 352–355 | DOI | DOI | MR | Zbl

[5] V. V. Senatov, “Application of the Chebyshev–Hermite moments in asymptotic decompositions”, in “Twentieth international seminar on stability problems for stochastic models”, Theory Probab. Appl., 46:1 (2002), 179–181 | DOI | DOI

[6] V. V. Senatov, Tsentralnaya predelnaya teorema: tochnost approksimatsii i asimptoticheskie razlozheniya, Knizhnyi dom “LIBROKOM”, M., 2009, 352 pp.

[7] V. V. Senatov, V. N. Sobolev, “New forms of asymptotic expansions in the central limit theorem”, Theory Probab. Appl., 57:1 (2013), 82–96 | DOI | DOI | MR | Zbl