@article{TVP_2022_67_1_a11,
author = {V. N. Sobolev and A. E. Kondratenko},
title = {On {Senatov} moments in asymptotic expansions in the central limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {193--198},
year = {2022},
volume = {67},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/}
}
TY - JOUR AU - V. N. Sobolev AU - A. E. Kondratenko TI - On Senatov moments in asymptotic expansions in the central limit theorem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 193 EP - 198 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/ LA - ru ID - TVP_2022_67_1_a11 ER -
V. N. Sobolev; A. E. Kondratenko. On Senatov moments in asymptotic expansions in the central limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 193-198. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a11/
[1] H. Cramér, “On the composition of elementary errors. I. Mathematical deductions”, Scand. Actuar. J., 1928:1 (1928), 13–74 ; II. Statistical applications, 141–180 | DOI | Zbl | DOI
[2] C.-G. Esseen, “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl
[3] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl
[4] A. E. Kondratenko, “The relation between a rate of convergence of moments of normed sums and the Chebyshev–Hermite models”, Theory Probab. Appl., 46:2 (2002), 352–355 | DOI | DOI | MR | Zbl
[5] V. V. Senatov, “Application of the Chebyshev–Hermite moments in asymptotic decompositions”, in “Twentieth international seminar on stability problems for stochastic models”, Theory Probab. Appl., 46:1 (2002), 179–181 | DOI | DOI
[6] V. V. Senatov, Tsentralnaya predelnaya teorema: tochnost approksimatsii i asimptoticheskie razlozheniya, Knizhnyi dom “LIBROKOM”, M., 2009, 352 pp.
[7] V. V. Senatov, V. N. Sobolev, “New forms of asymptotic expansions in the central limit theorem”, Theory Probab. Appl., 57:1 (2013), 82–96 | DOI | DOI | MR | Zbl