@article{TVP_2022_67_1_a10,
author = {F. Thomas Bruss},
title = {Galton{\textendash}Watson processes and their role as building blocks for branching processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {177--192},
year = {2022},
volume = {67},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a10/}
}
F. Thomas Bruss. Galton–Watson processes and their role as building blocks for branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 177-192. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a10/
[1] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[2] O. Barndorff-Nielsen, On the rate of growth of partial extrema of independent, identically distributed random variables, Amanuensis of Mathematics, Techn. Scient. Note 5, 1961, 17 pp.
[3] D. Bertacchi, F. P. Machado, F. Zucca, “Local and global survival for nonhomogeneous random walk systems on $\mathbb Z$”, Adv. in Appl. Probab., 46 (2014), 256–278 | DOI | MR | Zbl
[4] C. Biró, I. R. Curbelo, “Weak independence of events and the converse of the Borel–Cantelli Lemma”, Expo. Math., 2021, 1–13, Publ. online ; 2021 (v1 – 2020), 12 pp. | DOI
[5] F. T. Bruss, “Branching processes with random absorbing processes”, J. Appl. Probab., 15:1 (1978), 54–64 | DOI | MR | Zbl
[6] F. T. Bruss, “How to apply a medicament, if its direct efficiency is unknown”, Ann. Soc. Sci. Bruxelles Sér. I, 93:1 (1979), 39–54 | Zbl
[7] F. T. Bruss, “A counterpart of the Borel–Cantelli Lemma”, J. Appl. Probab., 17:4 (1980), 1094–1101 | DOI | MR | Zbl
[8] F. T. Bruss, “A note on extinction criteria for bisexual Galton–Watson processes”, J. Appl. Probab., 21:4 (1984), 915–919 | DOI | MR | Zbl
[9] F. T. Bruss, “Resource dependending branching processes”, in “Eleventh conference on stochastic processes and their applications: Clermont-Ferrand, France, 28 June–2 July 1982”, Stochastic Process. Appl., 16:1 (1984), 36 | DOI | Zbl
[10] F. T. Bruss, M. Slavtchova-Bojkova, “On waiting times to populate an environment and a question of statistical inference”, J. Appl. Probab., 36:1 (1999), 261–267 | DOI | MR | Zbl
[11] F. T. Bruss, M. Duerinckx, “Resource dependent branching processes and the envelope of societies”, Ann. Appl. Probab., 25:1 (2015), 324–372 | DOI | MR | Zbl
[12] F. T. Bruss, “The BRS-inequality and its applications”, Probab. Surv., 18 (2021), 44–76 | DOI | MR | Zbl
[13] S. N. Cohen, V. Fedyashov, Ergodic BSDEs with jumps and time dependence, 2015 (v1 – 2014), 37 pp., arXiv: 1406.4329v2
[14] D. J. Daley, “Extinction conditions for certain bisexual Galton–Watson branching processes”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9:4 (1968), 315–322 | DOI | MR | Zbl
[15] K. Dietz, “Simulation models for genetic control alternatives”, Mathematical analysis of decision problems in ecology (Istanbul, 1973), Lecture Notes in Biomath., 5, Springer-Verlag, Berlin–New York, 1975, 299–317 | DOI
[16] N. D. Feldheim, O. N. Feldheim, “Convergence of the quantile admission process with veto power”, Stochastic Process. Appl., 130:7 (2020), 4294–4325 | DOI | MR | Zbl
[17] W. M. Feldman, P. E. Souganidis, “Homogenization and non-homogenization of certain non-convex Hamilton–Jacobi equations”, J. Math. Pures Appl. (9), 108:5 (2017), 751–782 | DOI | MR | Zbl
[18] M. González Velasco, I. M. del Puerto García, G. P. Yanev, Controlled branching processes, v. 2, ed. E. Yarovaya, ISTE Ltd., London; John Wiley Sons, Inc., Hoboken, NJ, 2017, 240 pp.
[19] M. Gonzáles, C. Minuesa, I. del Puerto, “Maximum likelihood estimation and expectation-maximization algorithm for controlled branching processes”, Comput. Statist. Data Anal., 93 (2016), 209–227 | DOI | MR | Zbl
[20] P. Haccou, P. Jagers, V. A. Vatutin, Branching processes. Variation, growth, and extinction of populations, Camb. Stud. Adapt. Dyn., 5, Cambridge Univ. Press, Cambridge, 2005, xii+316 pp. | DOI | MR | Zbl
[21] G. K. Kobanenko, “Limit theorems for bounded branching processes”, Discrete Math. Appl., 28:5 (2018), 285–292 | DOI | DOI | MR | Zbl
[22] A. Makur, E. Mossel, Y. Polyanskiy, Broadcasting on two-dimensional regular grids, 2020, 52 pp., arXiv: 2010.01390v1
[23] M. Molina, M. Mota, A. Ramos, “Statistical inference in two-sex biological populations with reproduction in a random environment”, Ecol. Complex., 30 (2017), 63–69 | DOI
[24] H.-J. Schuh, “A condition for the extinction of a branching process with an absorbing lower barrier”, J. Math. Biol., 3 (1976), 271–287 | DOI | MR | Zbl
[25] B. A. Sevast'yanov, A. M. Zubkov, “Controlled branching processes”, Theory Probab. Appl., 19:1 (1974), 14–24 | DOI | MR | Zbl
[26] J. M. Steele, “The Bruss–Robertson inequality: elaborations, extensions, and applications”, Math. Appl. (Warsaw), 44:1 (2016), 3–16 | DOI | MR | Zbl
[27] D. Tasche, “On the second Borel–Cantelli lemma for strongly mixing sequences of events”, J. Appl. Probab., 34:2 (1997), 381–394 | DOI | MR | Zbl
[28] H. Terelius, K. H. Johansson, “Peer-to-peer gradient topologies in networks with churn”, IEEE Trans. Control Netw. Syst., 5:4 (2018), 2085–2095 | DOI | MR | Zbl
[29] V. A. Vatutin, “Asymptotic behavior of the non-extinction probability for a critical, branching process”, Theory Probab. Appl., 22:1 (1977), 140–146 | DOI | MR | Zbl
[30] V. A. Vatutin, A. M. Zubkov, “Branching processes. I”, J. Soviet Math., 39:1 (1987), 2431–2475 | DOI | MR | Zbl
[31] V. A. Vatutin, A. M. Zubkov, “Branching processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485 | DOI | MR | Zbl
[32] J. M. Wirtz, Coalescent theory and Yule trees in time and space, PhD thesis, Univ. Köln, Köln, 2019, xii+91 pp.
[33] N. M. Yanev, “Conditions for degeneracy of $\varphi$-branching processes with random $\varphi$”, Theory Probab. Appl., 20:2 (1976), 421–428 | DOI | MR | Zbl
[34] A. M. Zubkov, “A degeneracy condition for a bounded branching process”, Math. Notes, 8:1 (1970), 472–477 | DOI | MR | Zbl
[35] A. M. Zubkov, “A degeneracy condition for bounded continuous-time branching processes”, Theory Probab. Appl., 17:2 (1973), 284–297 | DOI | MR | Zbl
[36] A. M. Zubkov, “Analogies between Galton–Watson processes and $\varphi$-branching processes”, Theory Probab. Appl., 19:2 (1975), 309–331 | DOI | MR | Zbl
[37] A. M. Zubkov, “Limiting distributions of the distance to the closest common ancestor”, Theory Probab. Appl., 20:3 (1976), 602–612 | DOI | MR | Zbl