Reflecting L\'evy processes and associated families of linear operators.~II
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 23-36
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider special one-dimensional Markov processes, namely, asymmetric
jump Lévy processes, which have values in a given interval and reflect from
the boundary points. We show that in this case, in addition to the standard
semigroup of operators generated by the Markov process, there also appears
the family of “boundary” random operators that send functions defined on
the boundary of the interval to elements of the space $L_2$ on the entire
interval. This study is a continuation of our paper [Theory Probab.Appl., 64 (2019), 335–354], where a similar problem was solved for
symmetric reflecting Lévy processes.
Keywords:
random processes, initial-boundary problems, limit theorems, local time.
@article{TVP_2022_67_1_a1,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {Reflecting {L\'evy} processes and associated families of linear {operators.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {23--36},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a1/}
}
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - Reflecting L\'evy processes and associated families of linear operators.~II JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 23 EP - 36 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a1/ LA - ru ID - TVP_2022_67_1_a1 ER -
%0 Journal Article %A I. A. Ibragimov %A N. V. Smorodina %A M. M. Faddeev %T Reflecting L\'evy processes and associated families of linear operators.~II %J Teoriâ veroâtnostej i ee primeneniâ %D 2022 %P 23-36 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a1/ %G ru %F TVP_2022_67_1_a1
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Reflecting L\'evy processes and associated families of linear operators.~II. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 23-36. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a1/