Reflecting Lévy processes and associated families of linear operators. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 23-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider special one-dimensional Markov processes, namely, asymmetric jump Lévy processes, which have values in a given interval and reflect from the boundary points. We show that in this case, in addition to the standard semigroup of operators generated by the Markov process, there also appears the family of “boundary” random operators that send functions defined on the boundary of the interval to elements of the space $L_2$ on the entire interval. This study is a continuation of our paper [Theory Probab.Appl., 64 (2019), 335–354], where a similar problem was solved for symmetric reflecting Lévy processes.
Keywords: random processes, initial-boundary problems, limit theorems, local time.
@article{TVP_2022_67_1_a1,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {Reflecting {L\'evy} processes and associated families of linear {operators.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {23--36},
     year = {2022},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a1/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - Reflecting Lévy processes and associated families of linear operators. II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 23
EP  - 36
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a1/
LA  - ru
ID  - TVP_2022_67_1_a1
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T Reflecting Lévy processes and associated families of linear operators. II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 23-36
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a1/
%G ru
%F TVP_2022_67_1_a1
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. Reflecting Lévy processes and associated families of linear operators. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 23-36. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a1/

[1] G. A. Brosamler, “A probabilistic solution of the Neumann problem”, Math. Scand., 38:1 (1976), 137–147 | DOI | MR | Zbl

[2] A. V. Skorokhod, “Stochastic equations for diffusion processes in a bounded region”, Theory Probab. Appl., 6:3 (1961), 264–274 | DOI | MR | Zbl

[3] A. Pilipenko, An introduction to stochastic differential equations with reflection, Lect. Pure Appl. Math., 1, Potsdam Univ. Press, Potsdam, 2014, ix+75 pp. | Zbl

[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Reflecting Lévy processes and associated families of linear operators”, Theory Probab. Appl., 64:3 (2019), 335–354 | DOI | DOI | MR | Zbl

[5] K. Sato, H. Tanaka, “Local times on the boundary for multi-dimensional reflecting diffusion”, Proc. Japan Acad., 38:10 (1962), 699–702 | DOI | MR | Zbl

[6] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl