@article{TVP_2022_67_1_a0,
author = {F. G\"otze and A. Yu. Zaitsev},
title = {On alternative approximating distributions in the multivariate version of {Kolmogorov's} second uniform limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {3--22},
year = {2022},
volume = {67},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/}
}
TY - JOUR AU - F. Götze AU - A. Yu. Zaitsev TI - On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 3 EP - 22 VL - 67 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/ LA - ru ID - TVP_2022_67_1_a0 ER -
%0 Journal Article %A F. Götze %A A. Yu. Zaitsev %T On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem %J Teoriâ veroâtnostej i ee primeneniâ %D 2022 %P 3-22 %V 67 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/ %G ru %F TVP_2022_67_1_a0
F. Götze; A. Yu. Zaitsev. On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/
[1] T. V. Arak, A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables”, Proc. Steklov Inst. Math., 174 (1988), 1–222 | MR | MR | Zbl
[2] F. Götze, A. Naumov, V. Spokoiny, V. Ulyanov, “Large ball probabilities, Gaussian comparison and anti-concentration”, Bernoulli, 25:4A (2019), 2538–2563 | DOI | MR | Zbl
[3] F. Gettse, A. Yu. Zaitsev, “Redkie sobytiya i puassonovskie tochechnye protsessy”, Veroyatnost i statistika. 26, Zap. nauch. sem. POMI, 466, POMI, SPb., 2017, 109–119 ; F. Götze, A. Yu. Zaitsev, “Rare events and Poisson point processes”, J. Math. Sci. (N.Y.), 244:5 (2020), 771–778 ; (2018), 9 pp., arXiv: 1802.06638 | MR | Zbl | DOI
[4] F. Götze, A. Yu. Zaitsev, “Estimates for closeness of convolutions of probability distributions on convex polyhedra”, J. Math. Sci. (N.Y.), 251:1 (2020), 67–73 ; (2018), 8 pp., arXiv: 1812.07473 | DOI | MR | Zbl
[5] F. Gettse, A. Yu. Zaitsev, “Skhodimost k beskonechnomernym obobschennym raspredeleniyam Puassona na vypuklykh mnogogrannikakh”, Veroyatnost i statistika. 30, Zap. nauch. sem. POMI, 501, POMI, SPb., 2021, 118–125
[6] F. Gettse, A. Yu. Zaitsev, D. N. Zaporozhets, “Uluchshennyi mnogomernyi variant vtoroi ravnomernoi predelnoi teoremy Kolmogorova”, Veroyatnost i statistika. 28, Zap. nauch. sem. POMI, 486, POMI, SPb., 2019, 71–85 ; F. Götze, A. Yu. Zaitsev, D. Zaporozhets, “An improved multivariate version of Kolmogorov's second uniform limit theorem”, J. Math. Sci. (N.Y.), 258:6 (2021), 782–792 ; (2020 (v1 – 2019)), 12 pp., arXiv: 1912.13296 | Zbl | DOI
[7] I. A. Ibragimov, E. L. Presman, “On the rate of approach of the distributions of sums of independent random variables to accompanying distributions”, Theory Probab. Appl., 18:4 (1974), 713–727 | DOI | MR | Zbl
[8] A. N. Kolmogorov, “Two uniform limit theorems for sums of independent random variables”, Theory Probab. Appl., 1:4 (1956), 384–394 | DOI | MR | Zbl
[9] A. N. Kolmogorov, “Approximation to distributions of sums of independent terms by means of infinitely divisible distributions”, Trans. Moscow Math. Soc., 12 (1963), 492–509 | MR | Zbl
[10] L. Le Cam, “On the distribution of sums of independent random variables”, Bernoulli, Bayes, Laplace. Anniversary volume (Statist. Lab., Univ. California, Berkeley, CA, 1963), Springer-Verlag, New York, 1965, 179–202 | MR | Zbl
[11] A. Yu. Zaitsev, “On the accuracy of approximation of distributions of sums of independent random variables — which are nonzero with a small probability — by means of accompanying laws”, Theory Probab. Appl., 28:4 (1984), 657–669 | DOI | MR | Zbl
[12] A. Yu. Zaitsev, “Some remarks regarding the approximation of distributions of sums of independent terms”, J. Soviet Math., 33 (1986), 728–733 | DOI | MR | Zbl
[13] A. Yu. Zaitsev, “Approximation of convolutions of multidimensional distributions”, J. Soviet Math., 36:4 (1987), 482–489 | DOI | MR | Zbl
[14] A. Yu. Zaitsev, “Estimates of the Lévy–Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments”, Theory Probab. Appl., 31:2 (1986), 203–220 | DOI | MR | Zbl
[15] A. Yu. Zaitsev, “On the Gaussian approximation of convolutions under multidimensional analogues of S. N. Bernstein's inequality conditions”, Probab. Theory Related Fields, 74:4 (1987), 535–566 | DOI | MR | Zbl
[16] A. Yu. Zaitsev, “Multidimensional version of the second uniform limit theorem of Kolmogorov”, Theory Probab. Appl., 34:1 (1989), 108–128 | DOI | MR | Zbl
[17] A. Yu. Zaitsev, “Approximation of a sample by a Poisson point process”, J. Math. Sci. (N.Y.), 128:1 (2005), 2556–2563 | DOI | MR | Zbl
[18] A. Yu. Zaitsev, T. V. Arak, “On the rate of convergence in Kolmogorov's second uniform limit theorem”, Theory Probab. Appl., 28:2 (1984), 351–374 | DOI | MR | Zbl
[19] V. M. Zolotarev, “Probability metrics”, Theory Probab. Appl., 28:1 (1984), 278–302 | DOI | MR | Zbl
[20] V. M. Zolotarev, Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 416 pp. | MR | Zbl