On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 3-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of the present work is to show that our recent results on the approximation of distributions of sums of independent summands by the infinitely divisible laws on convex polyhedra can be obtained via an alternative class of approximating infinitely divisible distributions. We will also generalize the results to the infinite-dimensional case.
Keywords: Kolmogorov's uniform limit theorem, multidimensional distribution, infinitely divisible approximation, convex polyhedra.
@article{TVP_2022_67_1_a0,
     author = {F. G\"otze and A. Yu. Zaitsev},
     title = {On alternative approximating distributions in the multivariate version of {Kolmogorov's} second uniform limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--22},
     year = {2022},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. Yu. Zaitsev
TI  - On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 3
EP  - 22
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/
LA  - ru
ID  - TVP_2022_67_1_a0
ER  - 
%0 Journal Article
%A F. Götze
%A A. Yu. Zaitsev
%T On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 3-22
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/
%G ru
%F TVP_2022_67_1_a0
F. Götze; A. Yu. Zaitsev. On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/

[1] T. V. Arak, A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables”, Proc. Steklov Inst. Math., 174 (1988), 1–222 | MR | MR | Zbl

[2] F. Götze, A. Naumov, V. Spokoiny, V. Ulyanov, “Large ball probabilities, Gaussian comparison and anti-concentration”, Bernoulli, 25:4A (2019), 2538–2563 | DOI | MR | Zbl

[3] F. Gettse, A. Yu. Zaitsev, “Redkie sobytiya i puassonovskie tochechnye protsessy”, Veroyatnost i statistika. 26, Zap. nauch. sem. POMI, 466, POMI, SPb., 2017, 109–119 ; F. Götze, A. Yu. Zaitsev, “Rare events and Poisson point processes”, J. Math. Sci. (N.Y.), 244:5 (2020), 771–778 ; (2018), 9 pp., arXiv: 1802.06638 | MR | Zbl | DOI

[4] F. Götze, A. Yu. Zaitsev, “Estimates for closeness of convolutions of probability distributions on convex polyhedra”, J. Math. Sci. (N.Y.), 251:1 (2020), 67–73 ; (2018), 8 pp., arXiv: 1812.07473 | DOI | MR | Zbl

[5] F. Gettse, A. Yu. Zaitsev, “Skhodimost k beskonechnomernym obobschennym raspredeleniyam Puassona na vypuklykh mnogogrannikakh”, Veroyatnost i statistika. 30, Zap. nauch. sem. POMI, 501, POMI, SPb., 2021, 118–125

[6] F. Gettse, A. Yu. Zaitsev, D. N. Zaporozhets, “Uluchshennyi mnogomernyi variant vtoroi ravnomernoi predelnoi teoremy Kolmogorova”, Veroyatnost i statistika. 28, Zap. nauch. sem. POMI, 486, POMI, SPb., 2019, 71–85 ; F. Götze, A. Yu. Zaitsev, D. Zaporozhets, “An improved multivariate version of Kolmogorov's second uniform limit theorem”, J. Math. Sci. (N.Y.), 258:6 (2021), 782–792 ; (2020 (v1 – 2019)), 12 pp., arXiv: 1912.13296 | Zbl | DOI

[7] I. A. Ibragimov, E. L. Presman, “On the rate of approach of the distributions of sums of independent random variables to accompanying distributions”, Theory Probab. Appl., 18:4 (1974), 713–727 | DOI | MR | Zbl

[8] A. N. Kolmogorov, “Two uniform limit theorems for sums of independent random variables”, Theory Probab. Appl., 1:4 (1956), 384–394 | DOI | MR | Zbl

[9] A. N. Kolmogorov, “Approximation to distributions of sums of independent terms by means of infinitely divisible distributions”, Trans. Moscow Math. Soc., 12 (1963), 492–509 | MR | Zbl

[10] L. Le Cam, “On the distribution of sums of independent random variables”, Bernoulli, Bayes, Laplace. Anniversary volume (Statist. Lab., Univ. California, Berkeley, CA, 1963), Springer-Verlag, New York, 1965, 179–202 | MR | Zbl

[11] A. Yu. Zaitsev, “On the accuracy of approximation of distributions of sums of independent random variables — which are nonzero with a small probability — by means of accompanying laws”, Theory Probab. Appl., 28:4 (1984), 657–669 | DOI | MR | Zbl

[12] A. Yu. Zaitsev, “Some remarks regarding the approximation of distributions of sums of independent terms”, J. Soviet Math., 33 (1986), 728–733 | DOI | MR | Zbl

[13] A. Yu. Zaitsev, “Approximation of convolutions of multidimensional distributions”, J. Soviet Math., 36:4 (1987), 482–489 | DOI | MR | Zbl

[14] A. Yu. Zaitsev, “Estimates of the Lévy–Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments”, Theory Probab. Appl., 31:2 (1986), 203–220 | DOI | MR | Zbl

[15] A. Yu. Zaitsev, “On the Gaussian approximation of convolutions under multidimensional analogues of S. N. Bernstein's inequality conditions”, Probab. Theory Related Fields, 74:4 (1987), 535–566 | DOI | MR | Zbl

[16] A. Yu. Zaitsev, “Multidimensional version of the second uniform limit theorem of Kolmogorov”, Theory Probab. Appl., 34:1 (1989), 108–128 | DOI | MR | Zbl

[17] A. Yu. Zaitsev, “Approximation of a sample by a Poisson point process”, J. Math. Sci. (N.Y.), 128:1 (2005), 2556–2563 | DOI | MR | Zbl

[18] A. Yu. Zaitsev, T. V. Arak, “On the rate of convergence in Kolmogorov's second uniform limit theorem”, Theory Probab. Appl., 28:2 (1984), 351–374 | DOI | MR | Zbl

[19] V. M. Zolotarev, “Probability metrics”, Theory Probab. Appl., 28:1 (1984), 278–302 | DOI | MR | Zbl

[20] V. M. Zolotarev, Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 416 pp. | MR | Zbl