On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 3-22

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present work is to show that our recent results on the approximation of distributions of sums of independent summands by the infinitely divisible laws on convex polyhedra can be obtained via an alternative class of approximating infinitely divisible distributions. We will also generalize the results to the infinite-dimensional case.
Keywords: Kolmogorov's uniform limit theorem, multidimensional distribution, infinitely divisible approximation, convex polyhedra.
@article{TVP_2022_67_1_a0,
     author = {F. G\"otze and A. Yu. Zaitsev},
     title = {On alternative approximating distributions in the multivariate version of {Kolmogorov's} second uniform limit theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/}
}
TY  - JOUR
AU  - F. Götze
AU  - A. Yu. Zaitsev
TI  - On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 3
EP  - 22
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/
LA  - ru
ID  - TVP_2022_67_1_a0
ER  - 
%0 Journal Article
%A F. Götze
%A A. Yu. Zaitsev
%T On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 3-22
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/
%G ru
%F TVP_2022_67_1_a0
F. Götze; A. Yu. Zaitsev. On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/