On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 3-22
Voir la notice de l'article provenant de la source Math-Net.Ru
The aim of the present work is to show that our recent results
on the approximation of distributions of sums of independent summands by
the infinitely divisible laws on convex polyhedra can be obtained via an alternative class of approximating infinitely divisible distributions.
We will also generalize the results to the infinite-dimensional case.
Keywords:
Kolmogorov's uniform limit theorem, multidimensional distribution, infinitely divisible approximation, convex polyhedra.
@article{TVP_2022_67_1_a0,
author = {F. G\"otze and A. Yu. Zaitsev},
title = {On alternative approximating distributions in the multivariate version of {Kolmogorov's} second uniform limit theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {3--22},
publisher = {mathdoc},
volume = {67},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/}
}
TY - JOUR AU - F. Götze AU - A. Yu. Zaitsev TI - On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 3 EP - 22 VL - 67 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/ LA - ru ID - TVP_2022_67_1_a0 ER -
%0 Journal Article %A F. Götze %A A. Yu. Zaitsev %T On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem %J Teoriâ veroâtnostej i ee primeneniâ %D 2022 %P 3-22 %V 67 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/ %G ru %F TVP_2022_67_1_a0
F. Götze; A. Yu. Zaitsev. On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a0/