Approximation of free convolutions by free infinitely divisible laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 806-838

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the method of subordinating functions we prove bounds for the minimal error of approximations of $n$-fold convolutions of probability measures by free infinitely divisible probability measures.
Keywords: free random variables, Cauchy transforms, free convolutions, limit theorems.
@article{TVP_2021_66_4_a9,
     author = {G. P. Chistyakov and F. G\"otze},
     title = {Approximation of free convolutions by free infinitely divisible laws},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {806--838},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a9/}
}
TY  - JOUR
AU  - G. P. Chistyakov
AU  - F. Götze
TI  - Approximation of free convolutions by free infinitely divisible laws
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 806
EP  - 838
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a9/
LA  - ru
ID  - TVP_2021_66_4_a9
ER  - 
%0 Journal Article
%A G. P. Chistyakov
%A F. Götze
%T Approximation of free convolutions by free infinitely divisible laws
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 806-838
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a9/
%G ru
%F TVP_2021_66_4_a9
G. P. Chistyakov; F. Götze. Approximation of free convolutions by free infinitely divisible laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 806-838. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a9/