Approximation of free convolutions by free infinitely divisible laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 806-838
Voir la notice de l'article provenant de la source Math-Net.Ru
Based on the method of subordinating functions we prove bounds for the
minimal error of approximations of $n$-fold convolutions of probability
measures by free infinitely divisible probability measures.
Keywords:
free random variables, Cauchy transforms, free convolutions, limit theorems.
@article{TVP_2021_66_4_a9,
author = {G. P. Chistyakov and F. G\"otze},
title = {Approximation of free convolutions by free infinitely divisible laws},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {806--838},
publisher = {mathdoc},
volume = {66},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a9/}
}
TY - JOUR AU - G. P. Chistyakov AU - F. Götze TI - Approximation of free convolutions by free infinitely divisible laws JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 806 EP - 838 VL - 66 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a9/ LA - ru ID - TVP_2021_66_4_a9 ER -
G. P. Chistyakov; F. Götze. Approximation of free convolutions by free infinitely divisible laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 806-838. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a9/