@article{TVP_2021_66_4_a9,
author = {G. P. Chistyakov and F. G\"otze},
title = {Approximation of free convolutions by free infinitely divisible laws},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {806--838},
year = {2021},
volume = {66},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a9/}
}
G. P. Chistyakov; F. Götze. Approximation of free convolutions by free infinitely divisible laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 806-838. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a9/
[1] N. I. Akhiezer, The classical moment problem amd some related questions in analysis, Hafner Publishing Co., New York; Oliver Boyd, Edinburgh–London, 1965, x+253 pp. | MR | MR | Zbl | Zbl
[2] T. V. Arak, A. Yu. Zaitsev, “Uniform limit theorems for sums of independent random variables”, Proc. Steklov Inst. Math., 174 (1988), 1–222 ; II, 26:3 (1981), 449–463 | MR | MR | Zbl | MR | Zbl
[3] T. V. Arak, “On the convergence rate in Kolmogorov's uniform limit theorem. I”, Theory Probab. Appl., 26:2 (1982), 219–239 ; II, 26:3 (1982), 437–451 | DOI | DOI | MR | MR | Zbl | Zbl
[4] T. V. Arak, “An improvement of the lower bound for the rate of convergence in Kolmogorov's uniform limit theorem”, Theory Probab. Appl., 27:4 (1983), 826–832 | DOI | MR | Zbl
[5] S. T. Belinschi, H. Bercovici, “A new approach to subordination results in free probability”, J. Anal. Math., 101 (2007), 357–365 | DOI | MR | Zbl
[6] S. T. Belinschi, “The Lebesgue decomposition of the free additive convolution of two probability distributions”, Probab. Theory Relat. Fields, 142:1-2 (2008), 125–150 | DOI | MR | Zbl
[7] H. Bercovici, D. Voiculescu, “Free convolution of measures with unbounded support”, Indiana Univ. Math. J., 42:3 (1993), 733–773 | DOI | MR | Zbl
[8] H. Bercovici, V. Pata, “Stable laws and domains of attraction in free probability theory”, Ann. of Math. (2), 149:3 (1999), 1023–1060 | DOI | MR | Zbl
[9] Ph. Biane, “Processes with free increments”, Math. Z., 227:1 (1998), 143–174 | DOI | MR | Zbl
[10] P. Tchebichef, “Sur les valeurs limites des intégrales”, J. Math. Pures Appl. (2), 19 (1874), 151–160 | MR | Zbl | Zbl
[11] P. Tchebychef, “Sur le valeurs limites des intégrales”, Oeuvres, v. 2, Chelsea Publishing Co., New York, 1962, 183–185 | MR
[12] G. P. Chistyakov, “Bounds for approximations of $n$-fold convolutions of distributions with unlimited divisibility and the moments problem”, J. Math. Sci. (N.Y.), 76:4 (1995), 2493–2511 | DOI | MR | Zbl
[13] G. P. Chistyakov, F. Götze, “The arithmetic of distributions in free probability theory”, Cent. Eur. J. Math., 9:5 (2011), 997–1050 ; (2010), 66 pp., arXiv: math/0508245 | DOI | MR | Zbl
[14] G. P. Chistyakov, F. Götze, “Limit theorems in free probability theory. I”, Ann. Probab., 36:1 (2008), 54–90 | DOI | MR | Zbl
[15] G. P. Chistyakov, F. Götze, “Asymptotic expansions in the CLT in free probability”, Probab. Theory Related Fields, 157:1-2 (2013), 107–156 | DOI | MR | Zbl
[16] G. Chistyakov, F. Götze, “Free infinitely divisible approximations of $n$-fold free convolutions”, Prokhorov and contemporary probability theory, Springer Proc. Math. Stat., 33, Springer, Heidelberg, 2013, 225–237 | DOI | MR | Zbl
[17] W. Doeblin, “Sur les sommes d'un grand nombre de variables aléatoires indépendantes”, Bull. Sci. Math. (2), 63 (1939), 23–32, 35–64 | Zbl
[18] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, 2nd rev. ed., Addison-Wesley Publishing Co., Reading, MA–London–Don Mills., ON, 1968, ix+293 pp. | MR | MR | Zbl
[19] F. Hiai, D. Petz, The semicircle law, free random variables and entropy, Math. Surveys Monogr., 77, Amer. Math. Soc., Providence, RI, 2000, x+376 pp. | DOI | MR | Zbl
[20] V. Kargin, “On superconvergence of sums of free random variables”, Ann. Probab., 35:5 (2007), 1931–1949 | DOI | MR | Zbl
[21] A. N. Kolmogorov, “Nekotorye raboty poslednikh let v oblasti predelnykh teorem teorii veroyatnostei”, Vestn. Mosk. un-ta, 1953, no. 10, 29–38 | Zbl
[22] A. N. Kolmogorov, “Two uniform limit theorems for sums of independent random variables”, Theory Probab. Appl., 1:4 (1956), 384–394 | DOI | MR | Zbl
[23] J. Lamperti, Probability. A survey of the mathematical theory, Math. Monogr. Ser., W. A. Benjamin, Inc., New York–Amsterdam, 1966, x+150 pp. | MR | MR | Zbl | Zbl
[24] H. Maassen, “Addition of freely independent random variables”, J. Funct. Anal., 106:2 (1992), 409–438 | DOI | MR | Zbl
[25] A. Nica, R. Speicher, Lectures on the combinatorics of free probability, London Math. Soc. Lecture Note Ser., 335, Cambridge Univ. Press, Cambridge, 2006, xvi+417 pp. | DOI | MR | Zbl
[26] Yu. V. Prokhorov, “O summakh odinakovo raspredelennykh sluchainykh velichin”, Dokl. AN SSSR, 105:4 (1955), 645–647 | MR | Zbl
[27] E. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–New York, 1976, v+112 pp. | DOI | MR | MR | Zbl | Zbl
[28] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc., 132, no. 627, Amer. Math. Soc., Providence, RI, 1998, x+88 pp. | DOI | MR | Zbl
[29] M. Takesaki, Theory of operator algebras, v. II, Encyclopaedia Math. Sci., 125, Springer-Verlag, Berlin, 2003, xxii+518 pp. | DOI | MR | Zbl
[30] D. Voiculescu, “Addition of certain non-commuting random variables”, J. Funct. Anal., 66:3 (1986), 323–346 | DOI | MR | Zbl
[31] D. V. Voiculesku, K. J. Dykema, A. Nica, Free random variables, CRM Monogr. Ser., 1, Amer. Math. Soc., Providence, RI, 1992, vi+70 pp. | DOI | MR | Zbl
[32] D. V. Voiculescu, “The analogues of entropy and of Fisher's information measure in free probability theory. I”, Comm. Math. Phys., 155:1 (1993), 71–92 | DOI | MR | Zbl