@article{TVP_2021_66_4_a7,
author = {N. Agram and S. Haadem and B. {\O}ksendal and F. Proske},
title = {Optimal stopping, randomized stopping, and singular control with general information flow},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {760--773},
year = {2021},
volume = {66},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a7/}
}
TY - JOUR AU - N. Agram AU - S. Haadem AU - B. Øksendal AU - F. Proske TI - Optimal stopping, randomized stopping, and singular control with general information flow JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 760 EP - 773 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a7/ LA - ru ID - TVP_2021_66_4_a7 ER -
%0 Journal Article %A N. Agram %A S. Haadem %A B. Øksendal %A F. Proske %T Optimal stopping, randomized stopping, and singular control with general information flow %J Teoriâ veroâtnostej i ee primeneniâ %D 2021 %P 760-773 %V 66 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a7/ %G ru %F TVP_2021_66_4_a7
N. Agram; S. Haadem; B. Øksendal; F. Proske. Optimal stopping, randomized stopping, and singular control with general information flow. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 760-773. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a7/
[1] F. E. Benth, K. Reikvam, “A connection between singular stochastic control and optimal stopping”, Appl. Math. Optim., 49:1 (2004), 27–41 | DOI | MR | Zbl
[2] M. Chaleyat-Maurel, N. El Karoui, B. Marchal, “Réflexion discontinue et systèmes stochastiques”, Ann. Probab., 8:6 (1980), 1049–1067 | DOI | MR | Zbl
[3] C. Dellacherie, P.-A. Meyer, Probabilities and potential. C. Potential theory for discrete and continuous semigroups, North-Holland Math. Stud., 151, North-Holland Publishing Co., Amsterdam, 1988, xiv+416 pp. | MR | Zbl
[4] E. B. Dynkin, “The optimum choice of the instant for stopping a Markov process”, Soviet Math. Dokl., 4 (1963), 627–629 | MR | Zbl
[5] I. Gyöngy, D. Šiška, “On randomized stopping”, Bernoulli, 14:2 (2008), 352–361 | DOI | MR | Zbl
[6] Yaozhong Hu, B. Øksendal, “Optimal stopping with advanced information flow: selected examples”, Advances in mathematics of finance, Banach Center Publ., 83, Polish Acad. Sci. Inst. Math., Warsaw, 2008, 107–116 ; Preprint series. Pure Math. No 8, Dept. of Math., Univ. of Oslo, Oslo, 2007, 13 pp. http://urn.nb.no/URN:NBN:no-23477 | DOI | MR | Zbl
[7] I. Karatzas, S. E. Shreve, “Connections between optimal stopping and singular stochastic control. I. Monotone follower problems”, SIAM J. Control Optim., 22:6 (1984), 856–877 | DOI | MR | Zbl
[8] N. V. Krylov, Controlled diffusion processes, Stoch. Model. Appl. Probab., 14, Reprint of the 1980 ed., Springer-Verlag, Berlin, 2009, xii+308 pp. | DOI | MR | MR | Zbl | Zbl
[9] B. Øksendal, “Optimal stopping with delayed information”, Stoch. Dyn., 5:2 (2005), 271–280 | DOI | MR | Zbl
[10] B. Øksendal, A. Sulem, “Singular stochastic control and optimal stopping with partial information of Itô–Lévy processes”, SIAM J. Control Optim., 50:4 (2012), 2254–2287 | DOI | MR | Zbl
[11] B. Øksendal, A. Sulem, Applied stochastic control of jump diffusions, Universitext, 3rd ed., Springer, Cham, 2019, xvi+436 pp. | DOI | MR | Zbl
[12] M. Shashiashvili, “Semimartingale inequalities for the Snell envelopes”, Stochastics Stochastics Rep., 43:1-2 (1993), 65–72 | DOI | MR | Zbl
[13] A. N. Shiryaev, Optimal stopping rules, Stoch. Model. Appl. Probab., 8, ed. Reprint of the 1978 ed., Springer-Verlag, Berlin, 2008, xii+217 pp. | DOI | MR | MR | Zbl | Zbl