Optimal stopping, randomized stopping, and singular control with general information flow
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 760-773 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this paper is twofold. First, we extend the well-known relation between optimal stopping and randomized stopping of a given stochastic process to a situation where the available information flow is a filtration with no a priori assumed relation to the filtration of the process. We call these problems optimal stopping and randomized stopping with general information. Second, following an idea of N. V. Krylov [Controlled Diffusion Processes, Springer-Verlag, 2009], we introduce a special singular stochastic control problem with general information and show that this is also equivalent to the partial information optimal stopping and randomized stopping problems. Then we show that the solution of this singular control problem can be expressed in terms of partial information variational inequalities.
Keywords: optimal stopping, optimal control, singular control, general information flow.
@article{TVP_2021_66_4_a7,
     author = {N. Agram and S. Haadem and B. {\O}ksendal and F. Proske},
     title = {Optimal stopping, randomized stopping, and singular control with general information flow},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {760--773},
     year = {2021},
     volume = {66},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a7/}
}
TY  - JOUR
AU  - N. Agram
AU  - S. Haadem
AU  - B. Øksendal
AU  - F. Proske
TI  - Optimal stopping, randomized stopping, and singular control with general information flow
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 760
EP  - 773
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a7/
LA  - ru
ID  - TVP_2021_66_4_a7
ER  - 
%0 Journal Article
%A N. Agram
%A S. Haadem
%A B. Øksendal
%A F. Proske
%T Optimal stopping, randomized stopping, and singular control with general information flow
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 760-773
%V 66
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a7/
%G ru
%F TVP_2021_66_4_a7
N. Agram; S. Haadem; B. Øksendal; F. Proske. Optimal stopping, randomized stopping, and singular control with general information flow. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 760-773. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a7/

[1] F. E. Benth, K. Reikvam, “A connection between singular stochastic control and optimal stopping”, Appl. Math. Optim., 49:1 (2004), 27–41 | DOI | MR | Zbl

[2] M. Chaleyat-Maurel, N. El Karoui, B. Marchal, “Réflexion discontinue et systèmes stochastiques”, Ann. Probab., 8:6 (1980), 1049–1067 | DOI | MR | Zbl

[3] C. Dellacherie, P.-A. Meyer, Probabilities and potential. C. Potential theory for discrete and continuous semigroups, North-Holland Math. Stud., 151, North-Holland Publishing Co., Amsterdam, 1988, xiv+416 pp. | MR | Zbl

[4] E. B. Dynkin, “The optimum choice of the instant for stopping a Markov process”, Soviet Math. Dokl., 4 (1963), 627–629 | MR | Zbl

[5] I. Gyöngy, D. Šiška, “On randomized stopping”, Bernoulli, 14:2 (2008), 352–361 | DOI | MR | Zbl

[6] Yaozhong Hu, B. Øksendal, “Optimal stopping with advanced information flow: selected examples”, Advances in mathematics of finance, Banach Center Publ., 83, Polish Acad. Sci. Inst. Math., Warsaw, 2008, 107–116 ; Preprint series. Pure Math. No 8, Dept. of Math., Univ. of Oslo, Oslo, 2007, 13 pp. http://urn.nb.no/URN:NBN:no-23477 | DOI | MR | Zbl

[7] I. Karatzas, S. E. Shreve, “Connections between optimal stopping and singular stochastic control. I. Monotone follower problems”, SIAM J. Control Optim., 22:6 (1984), 856–877 | DOI | MR | Zbl

[8] N. V. Krylov, Controlled diffusion processes, Stoch. Model. Appl. Probab., 14, Reprint of the 1980 ed., Springer-Verlag, Berlin, 2009, xii+308 pp. | DOI | MR | MR | Zbl | Zbl

[9] B. Øksendal, “Optimal stopping with delayed information”, Stoch. Dyn., 5:2 (2005), 271–280 | DOI | MR | Zbl

[10] B. Øksendal, A. Sulem, “Singular stochastic control and optimal stopping with partial information of Itô–Lévy processes”, SIAM J. Control Optim., 50:4 (2012), 2254–2287 | DOI | MR | Zbl

[11] B. Øksendal, A. Sulem, Applied stochastic control of jump diffusions, Universitext, 3rd ed., Springer, Cham, 2019, xvi+436 pp. | DOI | MR | Zbl

[12] M. Shashiashvili, “Semimartingale inequalities for the Snell envelopes”, Stochastics Stochastics Rep., 43:1-2 (1993), 65–72 | DOI | MR | Zbl

[13] A. N. Shiryaev, Optimal stopping rules, Stoch. Model. Appl. Probab., 8, ed. Reprint of the 1978 ed., Springer-Verlag, Berlin, 2008, xii+217 pp. | DOI | MR | MR | Zbl | Zbl