@article{TVP_2021_66_4_a6,
author = {E. A. Feinberg and A. N. Shiryaev},
title = {Kolmogorov's equations for jump {Markov} processes and their applications to control problems},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {734--759},
year = {2021},
volume = {66},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a6/}
}
TY - JOUR AU - E. A. Feinberg AU - A. N. Shiryaev TI - Kolmogorov's equations for jump Markov processes and their applications to control problems JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 734 EP - 759 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a6/ LA - ru ID - TVP_2021_66_4_a6 ER -
E. A. Feinberg; A. N. Shiryaev. Kolmogorov's equations for jump Markov processes and their applications to control problems. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 734-759. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a6/
[1] W. J. Anderson, Continuous-time Markov chains. An applications-oriented approach, Springer Ser. Statist. Probab. Appl., Springer-Verlag, New York, 1991, xii+355 pp. | DOI | MR | Zbl
[2] D. P. Bertsekas, S. E. Shreve, Stochastic optimal control. The discrete time case, Math. Sci. Eng., 139, Academic Press, Inc., New York–London, 1978, xiii+323 pp. | MR | MR | Zbl | Zbl
[3] C. Derman, R. E. Strauch, “A note on memoryless rules for controlling sequential control processes”, Ann. Math. Statist., 37 (1966), 276–278 | DOI | MR | Zbl
[4] J. L. Doob, “Markoff chains — denumerable case”, Trans. Amer. Math. Soc., 58:3 (1945), 455–473 | DOI | MR | Zbl
[5] E. A. Feinberg, “A generalization of ‘expectation equals reciprocal of intensity’ to non-stationary exponential distributions”, J. Appl. Probab., 31:1 (1994), 262–267 | DOI | MR | Zbl
[6] E. A. Feinberg, “Continuous time discounted jump Markov decision processes: a discrete-event approach”, Math. Oper. Res., 29:3 (2004), 492–524 | DOI | MR | Zbl
[7] E. A. Feinberg, “Reduction of discounted continuous-time MDPs with unbounded jump and reward rates to discrete-time total-reward MDPs”, Optimization, control, and applications of stochastic systems, Systems Control Found. Appl., Birkhäuser/Springer, New York, 2012, 77–97 | DOI | MR | Zbl
[8] E. A. Feinberg, M. Mandava, A. N. Shiryaev, “On solutions of Kolmogorov's equations for nonhomogeneous jump Markov processes”, J. Math. Anal. Appl., 411:1 (2014), 261–270 | DOI | MR | Zbl
[9] E. Feinberg, M. Mandava, A. N. Shiryaev, “Kolmogorov's equations for jump Markov processes with unbounded jump rates”, Ann. Oper. Res., 2017, 1–18, Publ. online | DOI
[10] E. A. Feinberg, M. Mandava, A. N. Shiryaev, “Sufficiency of Markov policies for continuous-time jump Markov decision processes”, Math. Oper. Res. (to appear); 2020, 25 pp., arXiv: 2003.01342
[11] W. Feller, “On the integro-differential equations of purely discontinuous Markoff processes”, Trans. Amer. Math. Soc., 48:3 (1940), 488–515 ; “Errata”, Trans. Amer. Math. Soc., 58 (1945), 474 | DOI | MR | Zbl | DOI
[12] Xianping Guo, O. Hernández-Lerma, “Continuous-time controlled Markov chains”, Ann. Appl. Probab., 13:1 (2003), 363–388 | DOI | MR | Zbl
[13] Xianping Guo, O. Hernández-Lerma, Continuous-time Markov decision processes. Theory and applications, Stoch. Model. Appl. Probab., 62, Springer-Verlag, Berlin, 2009, xviii+231 pp. | DOI | MR | Zbl
[14] X. Guo, U. Rieder, “Average optimality for continuous-time Markov decision processes in Polish spaces”, Ann. Appl. Probab., 16:2 (2006), 730–756 | DOI | MR | Zbl
[15] Xianping Guo, Xinyuan Song, “Discounted continuous-time constrained Markov decision processes in Polish spaces”, Ann. Appl. Probab., 21:5 (2011), 2016–2049 | DOI | MR | Zbl
[16] Xin Guo, Yi Zhang, “A useful technique for piecewise deterministic Markov decision processes”, Oper. Res. Lett., 49:1 (2021), 55–61 | DOI | MR | Zbl
[17] R. A. Howard, Dynamic programming and Markov processes, The Technology Press of M.I.T., Cambridge, MA; John Wiley Sons, Inc., New York–London, 1960, viii+136 pp. | MR | MR | Zbl | Zbl
[18] J. Jacod, “Multivariate point processes: predictable projection, Radon–Nikodým derivatives, representation of martingales”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31 (1975), 235–253 | DOI | MR | Zbl
[19] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | DOI | MR | MR | MR | Zbl | Zbl
[20] P. Kakumanu, “Continuously discounted Markov decision model with countable state and action space”, Ann. Math. Statist., 42:3 (1971), 919–926 | DOI | MR | Zbl
[21] A. S. Kechris, Classical descriptive set theory, Grad. Texts in Math., 156, Springer-Verlag, New York, 1995, xviii+402 pp. | DOI | MR | Zbl
[22] D. G. Kendall, “Some further pathological examples in the theory of denumerable Markov processes”, Quart. J. Math. Oxford Ser. (2), 7 (1956), 39–56 | DOI | MR | Zbl
[23] M. Yu. Kitaev, “Semi-Markov and jump Markov controlled models: average cost criterion”, Theory Probab. Appl., 30:2 (1986), 272–288 | DOI | MR | Zbl
[24] M. Yu. Kitaev, V. V. Rykov, Controlled queueing systems, CRC Press, Boca Raton, FL, 1995, x+287 pp. | MR | Zbl
[25] A. N. Kolmogorov, “Ob analiticheskikh metodakh v teorii veroyatnostei”, UMN, 1938, no. 5, 5–41 ; A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 ; A. N. Kolmogorov, “On analytical methods in probability theory”, Selected works of A. N. Kolmogorov, т. 2, Math. Appl. (Soviet Ser.), 26, Probability theory and mathematical statistics, Springer, New York, 1992, 62–108 | DOI | MR | Zbl | DOI | MR | Zbl
[26] S. E. Kuznetsov, “Any Markov process in a Borel space has a transition function”, Theory Probab. Appl., 25:2 (1981), 384–388 | DOI | MR | Zbl
[27] B. L. Miller, “Finite state continuous time Markov decision processes with a finite planning horizon”, SIAM J. Control, 6:2 (1968), 266–280 | DOI | MR | Zbl
[28] B. L. Miller, “Finite state continuous time Markov decision processes with an infinite planning horizon”, J. Math. Anal. Appl., 22:3 (1968), 552–569 | DOI | MR | Zbl
[29] A. Piunovskiy, “Realizable strategies in continuous-time Markov decision processes”, SIAM J. Control Optim., 56:1 (2018), 473–495 | DOI | MR | Zbl
[30] A. Piunovskiy, Yi Zhang, “Discounted continuous-time Markov decision processes with unbounded rates and randomized history-dependent policies: the dynamic programming approach”, 4OR, 12:1 (2014), 49–75 | DOI | MR | Zbl
[31] A. Piunovskiy, Yi Zhang, Continuous-time Markov decision processes. Borel space models and general control strategies, Probab. Theory Stoch. Model., 97, Springer, Cham, 2020, xxiv+583 pp. | DOI | MR | Zbl
[32] G. E. H. Reuter, “Denumerable Markov processes and the associated contraction semigroups on $l$”, Acta Math., 97 (1957), 1–46 | DOI | MR | Zbl
[33] V. V. Rykov, “Markov decision processes with finite state and decision spaces”, Theory Probab. Appl., 11:2 (1966), 302–311 | DOI | MR | Zbl
[34] R. F. Serfozo, “An equivalence between continuous and discrete time Markov decision processes”, Oper. Res., 27:3 (1979), 616–620 | DOI | MR | Zbl
[35] R. E. Strauch, “Negative dynamic programming”, Ann. Math. Statist., 37:4 (1966), 871–890 | DOI | MR | Zbl
[36] Liuer Ye, Xianping Guo, O. Hernández-Lerma, “Existence and regularity of a nonhomogeneous transition matrix under measurability conditions”, J. Theoret. Probab., 21:3 (2008), 604–627 | DOI | MR | Zbl
[37] A. A. Yushkevich, “Controlled Markov models with countable state space and continuous time”, Theory Probab. Appl., 22:2 (1978), 215–235 | DOI | MR | Zbl
[38] A. A. Yushkevich, “Controlled jump Markov models”, Theory Probab. Appl., 25:2 (1981), 244–266 | DOI | MR | Zbl