Chebyshev-type inequalities and large deviation principles
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 718-733 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\xi_1,\xi_2,\dots$ be a sequence of independent copies of a random variable (r.v.) $\xi$, ${S_n=\sum_{j=1}^n\xi_j}$, $A(\lambda)=\ln\mathbf{E}e^{\lambda\xi}$, $\Lambda(\alpha)=\sup_\lambda(\alpha\lambda-A(\lambda))$ is the Legendre transform of $A(\lambda)$. In this paper, which is partially a review to some extent, we consider generalization of the exponential Chebyshev-type inequalities $\mathbf{P}(S_n\geq\alpha n)\leq\exp\{-n\Lambda(\alpha)\}$, $\alpha\geq\mathbf{E}\xi$, for the following three cases: I. Sums of random vectors, II. stochastic processes (the trajectories of random walks), and III. random fields associated with Erdős–Rényi graphs with weights. It is shown that these generalized Chebyshev-type inequalities enable one to get exponentially unimprovable upper bounds for the probabilities to hit convex sets and also to prove the large deviation principles for objects mentioned in I–III.
Keywords: exponential Chebyshev-type inequality, large deviation principle, local large deviation principle, random walk, random field, Erdős–Rényi graphs.
@article{TVP_2021_66_4_a5,
     author = {A. A. Borovkov and A. V. Logachov and A. A. Mogul'skii},
     title = {Chebyshev-type inequalities and large deviation principles},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {718--733},
     year = {2021},
     volume = {66},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - A. V. Logachov
AU  - A. A. Mogul'skii
TI  - Chebyshev-type inequalities and large deviation principles
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 718
EP  - 733
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/
LA  - ru
ID  - TVP_2021_66_4_a5
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A A. V. Logachov
%A A. A. Mogul'skii
%T Chebyshev-type inequalities and large deviation principles
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 718-733
%V 66
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/
%G ru
%F TVP_2021_66_4_a5
A. A. Borovkov; A. V. Logachov; A. A. Mogul'skii. Chebyshev-type inequalities and large deviation principles. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 718-733. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/

[1] I. J. Bienaymé, “Considérations à l'appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés”, C. R. Acad. Sci. Paris, 37 (1853), 309–324

[2] P. Tchébychef, “Des valeurs moyennes”, J. Math. Pures Appl. (2), 12 (1867), 177–184

[3] E. Seneta, “I. J. Bienaymé [1796–1878]: criticality, inequality, and internationalization”, Int. Stat. Rev., 66:3 (1998), 291–301 | DOI | Zbl

[4] A. A. Borovkov, Asymptotic analysis of random walks. Light-tailed distributions, Encyclopedia Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020, xvi+420 pp. | DOI | Zbl | Zbl

[5] A. A. Borovkov, “Boundary-value problems for random walks and large deviations in function spaces”, Theory Probab. Appl., 12:4 (1967), 575–595 | DOI | MR | Zbl

[6] A. A. Borovkov, Obobschennye protsessy vosstanovleniya, RAN, M., 2020, 455 pp.

[7] A. A. Borovkov, “On exact large deviation principles for compound renewal processes”, Theory Probab. Appl., 66:2 (2021), 170–183 | DOI | DOI | Zbl

[8] A. V. Logachov, A. A. Mogulskii, “Exponential Chebyshev inequalities for random graphons and their applications”, Sib. Math. J., 61:4 (2020), 697–714 | DOI | DOI | MR | Zbl

[9] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1970, xii+403 pp. | MR | MR | Zbl | Zbl

[10] S. Chatterjee, S. R. S. Varadhan, “The large deviation principle for the Erdős–Rényi random graph”, European J. Combin., 32:7 (2011), 1000–1017 | DOI | MR | Zbl