Chebyshev-type inequalities and large deviation principles
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 718-733

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\xi_2,\dots$ be a sequence of independent copies of a random variable (r.v.) $\xi$, ${S_n=\sum_{j=1}^n\xi_j}$, $A(\lambda)=\ln\mathbf{E}e^{\lambda\xi}$, $\Lambda(\alpha)=\sup_\lambda(\alpha\lambda-A(\lambda))$ is the Legendre transform of $A(\lambda)$. In this paper, which is partially a review to some extent, we consider generalization of the exponential Chebyshev-type inequalities $\mathbf{P}(S_n\geq\alpha n)\leq\exp\{-n\Lambda(\alpha)\}$, $\alpha\geq\mathbf{E}\xi$, for the following three cases: I. Sums of random vectors, II. stochastic processes (the trajectories of random walks), and III. random fields associated with Erdős–Rényi graphs with weights. It is shown that these generalized Chebyshev-type inequalities enable one to get exponentially unimprovable upper bounds for the probabilities to hit convex sets and also to prove the large deviation principles for objects mentioned in I–III.
Keywords: exponential Chebyshev-type inequality, large deviation principle, local large deviation principle, random walk, random field, Erdős–Rényi graphs.
@article{TVP_2021_66_4_a5,
     author = {A. A. Borovkov and A. V. Logachov and A. A. Mogul'skii},
     title = {Chebyshev-type inequalities and large deviation principles},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {718--733},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - A. V. Logachov
AU  - A. A. Mogul'skii
TI  - Chebyshev-type inequalities and large deviation principles
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 718
EP  - 733
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/
LA  - ru
ID  - TVP_2021_66_4_a5
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A A. V. Logachov
%A A. A. Mogul'skii
%T Chebyshev-type inequalities and large deviation principles
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 718-733
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/
%G ru
%F TVP_2021_66_4_a5
A. A. Borovkov; A. V. Logachov; A. A. Mogul'skii. Chebyshev-type inequalities and large deviation principles. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 718-733. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/