@article{TVP_2021_66_4_a5,
author = {A. A. Borovkov and A. V. Logachov and A. A. Mogul'skii},
title = {Chebyshev-type inequalities and large deviation principles},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {718--733},
year = {2021},
volume = {66},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/}
}
TY - JOUR AU - A. A. Borovkov AU - A. V. Logachov AU - A. A. Mogul'skii TI - Chebyshev-type inequalities and large deviation principles JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 718 EP - 733 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/ LA - ru ID - TVP_2021_66_4_a5 ER -
A. A. Borovkov; A. V. Logachov; A. A. Mogul'skii. Chebyshev-type inequalities and large deviation principles. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 718-733. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a5/
[1] I. J. Bienaymé, “Considérations à l'appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés”, C. R. Acad. Sci. Paris, 37 (1853), 309–324
[2] P. Tchébychef, “Des valeurs moyennes”, J. Math. Pures Appl. (2), 12 (1867), 177–184
[3] E. Seneta, “I. J. Bienaymé [1796–1878]: criticality, inequality, and internationalization”, Int. Stat. Rev., 66:3 (1998), 291–301 | DOI | Zbl
[4] A. A. Borovkov, Asymptotic analysis of random walks. Light-tailed distributions, Encyclopedia Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020, xvi+420 pp. | DOI | Zbl | Zbl
[5] A. A. Borovkov, “Boundary-value problems for random walks and large deviations in function spaces”, Theory Probab. Appl., 12:4 (1967), 575–595 | DOI | MR | Zbl
[6] A. A. Borovkov, Obobschennye protsessy vosstanovleniya, RAN, M., 2020, 455 pp.
[7] A. A. Borovkov, “On exact large deviation principles for compound renewal processes”, Theory Probab. Appl., 66:2 (2021), 170–183 | DOI | DOI | Zbl
[8] A. V. Logachov, A. A. Mogulskii, “Exponential Chebyshev inequalities for random graphons and their applications”, Sib. Math. J., 61:4 (2020), 697–714 | DOI | DOI | MR | Zbl
[9] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1970, xii+403 pp. | MR | MR | Zbl | Zbl
[10] S. Chatterjee, S. R. S. Varadhan, “The large deviation principle for the Erdős–Rényi random graph”, European J. Combin., 32:7 (2011), 1000–1017 | DOI | MR | Zbl