Mots-clés : polynomial in Gaussian random variables, Malliavin calculus
@article{TVP_2021_66_4_a4,
author = {V. I. Bogachev},
title = {Chebyshev{\textendash}Hermite polynomials and distributions of polynomials in {Gaussian} random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {693--717},
year = {2021},
volume = {66},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a4/}
}
TY - JOUR AU - V. I. Bogachev TI - Chebyshev–Hermite polynomials and distributions of polynomials in Gaussian random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 693 EP - 717 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a4/ LA - ru ID - TVP_2021_66_4_a4 ER -
V. I. Bogachev. Chebyshev–Hermite polynomials and distributions of polynomials in Gaussian random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 693-717. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a4/
[1] G. W. Anderson, A. Guionnet, O. Zeitouni, An introduction to random matrices, Cambridge Stud. Adv. Math., 118, Cambridge Univ. Press, Cambridge, 2010, xiv+492 pp. | DOI | MR | Zbl
[2] M. A. Arcones, “The class of Gaussian chaos of order two is closed by taking limits in distribution”, Advances in stochastic inequalities (Georgia Inst. of Technology, Atlanta, GA, 1997), Contemp. Math., 234, Amer. Math. Soc., Providence, RI, 1999, 13–19 | DOI | MR | Zbl
[3] L. M. Arutyunyan, Integralnye neravenstva Remeza dlya mnogochlenov na vypuklykh telakh, 2019, 8 pp., arXiv: 1911.11878v2
[4] L. M. Arutyunyan, E. D. Kosov, “Deviation of polynomials from their expectations and isoperimetry”, Bernoulli, 24:3 (2018), 2043–2063 | DOI | MR | Zbl
[5] V. Bally, L. Caramellino, “Total variation distance between stochastic polynomials and invariance principles”, Ann. Probab., 47:6 (2019), 3762–3811 | DOI | MR | Zbl
[6] R. S. Batahan, “A new extension of Hermite matrix polynomials and its applications”, Linear Algebra Appl., 419:1 (2006), 82–92 | DOI | MR | Zbl
[7] V. I. Bogachev, “Functionals of random processes and infinite-dimensional oscillatory integrals connected with them”, Russian Acad. Sci. Izv. Math., 40:2 (1993), 235–266 | DOI | MR | Zbl
[8] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl
[9] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010, xvi+488 pp. | DOI | MR | Zbl
[10] V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749 | DOI | DOI | MR | Zbl
[11] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl
[12] V. I. Bogachev, “Ornstein–Uhlenbeck operators and semigroups”, Russian Math. Surveys, 73:2 (2018), 191–260 | DOI | DOI | MR | Zbl
[13] V. I. Bogachev, “Distributions of polynomials in many variables and Nikolskii–Besov spaces”, Real Anal. Exchange, 44:1 (2019), 49–63 | DOI | MR | Zbl
[14] V. I. Bogachev, E. D. Kosov, I. Nourdin, G. Poly, “Two properties of vectors of quadratic forms in Gaussian random variables”, Theory Probab. Appl., 59:2 (2015), 208–221 | DOI | DOI | MR | Zbl
[15] V. I. Bogachev, E. D. Kosov, S. N. Popova, “A new approach to Nikolskii–Besov classes”, Mosc. Math. J., 19:4 (2019), 619–654 | DOI | MR | Zbl
[16] V. I. Bogachev, E. D. Kosov, S. N. Popova, “Densities of distributions of homogeneous functions of Gaussian random vectors”, Dokl. Math., 102:3 (2020), 460–463 | DOI | DOI
[17] V. I. Bogachev, E. D. Kosov, S. N. Popova, “O raspredeleniyakh odnorodnykh i vypuklykh funktsii ot gaussovskikh sluchainykh velichin”, Izv. RAN, 85 (2021) (to appear)
[18] V. I. Bogachev, E. D. Kosov, G. I. Zelenov, “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432 | DOI | MR | Zbl
[19] P. Breuer, P. Major, “Central limit theorems for non-linear functionals of Gaussian fields”, J. Multivariate Anal., 13:3 (1983), 425–441 | DOI | MR | Zbl
[20] A. Carbery, J. Wright, “Distributional and $L^q$ norm inequalities for polynomials over convex bodies in $\mathbb R^n$”, Math. Res. Lett., 8:3 (2001), 233–248 | DOI | MR | Zbl
[21] Y. Davydov, “On distance in total variation between image measures”, Statist. Probab. Lett., 129 (2017), 393–400 | DOI | MR | Zbl
[22] R. L. Dobrushin, P. Major, “Non-central limit theorems for non-linear functionals of Gaussian fields”, Z. Wahrsch. Verw. Gebiete, 50:1 (1979), 27–52 | DOI | MR | Zbl
[23] S. Douissi, K. Es-Sebaiy, G. Kerchev, I. Nourdin, Berry–Esseen bounds of second moment estimators for Gaussian processes observed at high frequency, 2021, 30 pp., arXiv: 2102.04810
[24] K. Es-Sebaiy, F. G. Viens, “Optimal rates for parameter estimation of stationary Gaussian processes”, Stochastic Process. Appl., 129:9 (2019), 3018–3054 | DOI | MR | Zbl
[25] F. Götze, A. Naumov, V. Spokoiny, V. Ulyanov, “Large ball probabilities, Gaussian comparison and anti-concentration”, Bernoulli, 25:4A (2019), 2538–2563 | DOI | MR | Zbl
[26] F. Götze, A. A. Naumov, A. N. Tikhomirov, “Moment inequalities for linear and nonlinear statistics”, Theory Probab. Appl., 65:1 (2020), 1–16 | DOI | DOI | MR | Zbl
[27] F. Götze, Yu. V. Prokhorov, V. V. Ulyanov, “Bounds for characteristic functions of polynomials in asymptotically normal random variables”, Russian Math. Surveys, 51:2 (1996), 181–204 | DOI | DOI | MR | Zbl
[28] J. Gwoździewicz, “The Łojasiewicz exponent of an analytic function at an isolated zero”, Comment. Math. Helv., 74:3 (1999), 364–375 | DOI | MR | Zbl
[29] C. Hermite, “Sur un nouveau développement en série de fonctions”, C. R. Acad. Sci. Paris, 58 (1864), 93–100; Oeuvres, v. 2, Gauthier-Villars, Paris, 1908, 293–308 | MR | Zbl
[30] T. Hida, Hui-Hsiung Kuo, J. Potthoff, L. Streit, White noise. An infinite dimensional calculus, Math. Appl., 253, Kluwer Acad. Publ., Dordrecht, 1993, xiv+516 pp. | DOI | MR | Zbl
[31] E. Hille, “A class of reciprocal functions”, Ann. of Math. (2), 27:4 (1926), 427–464 | DOI | MR | Zbl
[32] Yaozhong Hu, Analysis on Gaussian spaces, World Sci. Publ., Hackensack, NJ, 2017, xi+470 pp. | DOI | MR | Zbl
[33] C. Irrgeher, P. Kritzer, F. Pillichshammer, H. Woźniakowski, “Approximation in Hermite spaces of smooth functions”, J. Approx. Theory, 207 (2016), 98–126 | DOI | MR | Zbl
[34] S. Janson, Gaussian Hilbert spaces, Cambridge Tracts in Math., 129, Cambridge Univ. Press, Cambridge, 1997, x+340 pp. | DOI | MR | Zbl
[35] S. Khan, A. A. Al-Gonah, “Multi-variable Hermite matrix polynomials: properties and applications”, J. Math. Anal. Appl., 412:1 (2014), 222–235 | DOI | MR | Zbl
[36] C. G. Khatri, “Quadratic forms in normal variables”, Analysis of variance, Handbook of Statistics, 1, North Holland Publishing Co., Amsterdam–New York, 1980, 443–469 | DOI | MR | Zbl
[37] E. D. Kosov, “Fractional smoothness of images of logarithmically concave measures under polynomials”, J. Math. Anal. Appl., 462:1 (2018), 390–406 | DOI | MR | Zbl
[38] E. D. Kosov, “Besov classes on a space with a Gaussian measure”, Dokl. Math., 97:1 (2018), 20–22 | DOI | DOI | MR | Zbl
[39] E. D. Kosov, “On fractional regularity of distributions of functions in Gaussian random variables”, Fract. Calc. Appl. Anal., 22:5 (2019), 1249–1268 | DOI | MR | Zbl
[40] E. D. Kosov, “Besov classes on finite and infinite dimensional spaces”, Sb. Math., 210:5 (2019), 663–692 | DOI | DOI | MR | Zbl
[41] E. D. Kosov, Regularity of linear and polynomial images of Skorohod differentiable measures, 2019, 11 pp., arXiv: 1907.01084
[42] E. D. Kosov, Distributions of polynomials in Gaussian random variables under structural constraints, 2020, 7 pp., arXiv: 2007.12742
[43] E. D. Kosov, “Total variation distance estimates via $L^2$-norm for polynomials in log-concave random vectors”, Int. Math. Res. Not. IMRN, 2021, rnz278 | DOI
[44] E. D. Kosov, “Raspredeleniya mnogochlenov vtoroi stepeni ot gaussovskikh sluchainykh velichin”, Matem. zametki, 2022 (to appear) ; E. Kosov, Bounds for the total variation distance between second degree polynomials in normal random variables, 2021, 11 pp., arXiv: 2105.04016
[45] P. S. Laplace, “Mémoire sur les intégrales définies et leur application aux probabilités, et spécialement à la recherche du milieu qu'il faut choisir entre les résultats des observations”, Mém. Acad. Sci., XI (1810), 279–347; Oeuvres complètes, v. 12, Gauthier-Villars, Paris, 1898, 357–412 | Zbl
[46] M. Ledoux, “Isoperimetry and Gaussian analysis”, Lectures on probability theory and statistics (Saint-Flour, 1994), Lecture Notes in Math., 1648, Springer, Berlin, 1996, 165–294 | DOI | MR | Zbl
[47] I. A. López P., “Sobolev spaces and potential spaces associated to Hermite polynomials expansions”, Extracta Math., 33:2 (2018), 229–249 | DOI | MR | Zbl
[48] P. Malliavin, “Stochastic calculus of variation and hypoelliptic operators”, Proceedings of the international symposium on stochastic differential equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976), Wiley, New York–Chichester–Brisbane, 1978, 195–263 | MR | Zbl
[49] P. Malliavin, Stochastic analysis, Grundlehren Math. Wiss., 313, Springer-Verlag, Berlin, 1997, xii+343 pp. | DOI | MR | Zbl
[50] G. V. Martynov, Kriterii omega-kvadrat, Nauka, M., 1978, 79 pp. | MR | Zbl
[51] F. Nazarov, M. Sodin, A. Volberg, “The geometric Kannan–Lovász–Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions”, St. Petersburg Math. J., 14:2 (2003), 351–366 | MR | Zbl
[52] F. G. Mehler, “Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung”, J. Reine Angew. Math., 1866:66 (1866), 161–176 | DOI | MR | Zbl
[53] I. Nourdin, G. Poly, “Convergence in total variation on Wiener chaos”, Stochastic Processes Appl., 123:2 (2013) | DOI | MR | Zbl
[54] D. Nualart, The Malliavin calculus and related topics, Probab. Appl. (N.Y.), 2nd ed., Springer-Verlag, Berlin, 2006, xiv+382 pp. | DOI | MR | Zbl
[55] A. Olenko, V. Vaskovych, “Non-central limit theorems for functionals of random fields on hypersurfaces”, ESAIM Probab. Stat., 24 (2020), 315–340 | DOI | MR | Zbl
[56] K. Y. Patarroyo, A digression on Hermite polynomials, 2020, 43 pp., arXiv: 1901.01648v2
[57] B. A. Sevastyanov, “A class of limit distributions for quadratic forms of normal stochastic variables”, in `Summary of papers presented at the sessions of the probability and statistics section of the Moscow Mathematical Society (November–December, 1960), Theor. Probab. Appl., 6:3 (1961), 337–340
[58] I. Shigekawa, Stochastic analysis, Transl. Math. Monogr., 224, Iwanami Series in Modern Mathematics, Amer. Math. Soc., Providence, RI, 2004, xii+182 pp. | DOI | MR | Zbl
[59] J. A. Shohat, E. Hille, J. L. Walsh, A bibliography on orthogonal polynomials, Bulletin of the National Research Council, 103, National Research Council of the National Academy of Sciences, Washington, DC, 1940, ix+204 pp. | MR | Zbl
[60] P. K. Suetin, Klassicheskie orotogonalnye mnogochleny, 2-e izd., Nauka, M., 1979, 416 pp. | MR | Zbl
[61] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975, xiii+432 pp. | MR | Zbl | Zbl
[62] P. L. Tchébychef, “Sur le développement des fonctions à une seule variable”, Bull. Acad. Imp. Sci. St. Petersb., 1 (1960), 193–200 | MR | Zbl
[63] V. V. Ulyanov, “On properties of polynomials in random elements”, Theory Probab. Appl., 60:2 (2016), 325–336 | DOI | DOI | MR | Zbl
[64] W. Urbina-Romero, Gaussian harmonic analysis, Springer Monogr. Math., Springer, Cham, 2019, xix+477 pp. | DOI | MR | Zbl
[65] H. Weyl, “Singuläre Integralgleichungen”, Math. Ann., 66:3 (1908), 273–324 | DOI | MR
[66] G. I. Zelenov, “On distances between distributions of polynomials”, Theory Stoch. Process., 22(38):2 (2017), 79–85 | MR | Zbl
[67] R. Zintout, “The total variation distance between two double Wiener–Itô integrals”, Statist. Probab. Lett., 83:10 (2013), 2160–2167 | DOI | MR | Zbl