The Chebyshev--Edgeworth correction in the central limit theorem for integer-valued independent summands
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 676-692

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a short overview of the results related to the refined forms of the central limit theorem, with a focus on independent integer-valued random variables (r.v.'s). In the independent and non-identically distributed (non-i.i.d.) case, an approximation is then developed for the distribution of the sum by means of the Chebyshev–Edgeworth correction containing the moments of the third order.
Keywords: central limit theorem, the Chebyshev–Edgeworth correction, integer-valued random variables.
@article{TVP_2021_66_4_a3,
     author = {S. G. Bobkov and V. V. Ulyanov},
     title = {The {Chebyshev--Edgeworth} correction in the central limit theorem for integer-valued independent summands},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {676--692},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a3/}
}
TY  - JOUR
AU  - S. G. Bobkov
AU  - V. V. Ulyanov
TI  - The Chebyshev--Edgeworth correction in the central limit theorem for integer-valued independent summands
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 676
EP  - 692
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a3/
LA  - ru
ID  - TVP_2021_66_4_a3
ER  - 
%0 Journal Article
%A S. G. Bobkov
%A V. V. Ulyanov
%T The Chebyshev--Edgeworth correction in the central limit theorem for integer-valued independent summands
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 676-692
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a3/
%G ru
%F TVP_2021_66_4_a3
S. G. Bobkov; V. V. Ulyanov. The Chebyshev--Edgeworth correction in the central limit theorem for integer-valued independent summands. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 676-692. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a3/