Distributional uncertainty of the financial time series measured by $G$-expectation
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 914-928
Voir la notice de l'article provenant de la source Math-Net.Ru
Based on the law of large numbers and the central limit theorem under
nonlinear expectation, we introduce a new method of using $G$-normal
distribution to measure financial risks. Applying max-mean estimators and
a small windows method, we establish autoregressive models to determine the
parameters of $G$-normal distribution, i.e., the return, maximal, and
minimal volatilities of the time series. Utilizing the value at risk (VaR)
predictor model under $G$-normal distribution, we show that the $G$-VaR
model gives an excellent performance in predicting the VaR for a benchmark
dataset comparing to many well-known VaR predictors.
Keywords:
autoregressive model, sublinear expectation, volatility uncertainty, $G$-VaR, $G$-normal distribution.
@article{TVP_2021_66_4_a13,
author = {Shige Peng and Shuzhen Yang},
title = {Distributional uncertainty of the financial time series measured by $G$-expectation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {914--928},
publisher = {mathdoc},
volume = {66},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a13/}
}
TY - JOUR AU - Shige Peng AU - Shuzhen Yang TI - Distributional uncertainty of the financial time series measured by $G$-expectation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 914 EP - 928 VL - 66 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a13/ LA - ru ID - TVP_2021_66_4_a13 ER -
Shige Peng; Shuzhen Yang. Distributional uncertainty of the financial time series measured by $G$-expectation. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 914-928. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a13/