@article{TVP_2021_66_4_a13,
author = {Shige Peng and Shuzhen Yang},
title = {Distributional uncertainty of the financial time series measured by $G$-expectation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {914--928},
year = {2021},
volume = {66},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a13/}
}
TY - JOUR AU - Shige Peng AU - Shuzhen Yang TI - Distributional uncertainty of the financial time series measured by $G$-expectation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 914 EP - 928 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a13/ LA - ru ID - TVP_2021_66_4_a13 ER -
Shige Peng; Shuzhen Yang. Distributional uncertainty of the financial time series measured by $G$-expectation. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 914-928. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a13/
[1] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, “Coherent measures of risk”, Math. Finance, 9:3 (1999), 203–228 | DOI | MR | Zbl
[2] M. Avellaneda, A. Levy, A. Parás, “Pricing and hedging derivative securities in markets with uncertain volatilities”, Appl. Math. Finance, 2:2 (1995), 73–88 | DOI | Zbl
[3] Zengjing Chen, L. Epstein, “Ambiguity, risk, and asset returns in continuous time”, Econometrica, 70:4 (2002), 1403–1443 | DOI | MR | Zbl
[4] R. Cont, “Model uncertainty and its impact on the pricing of derivative instruments”, Math. Finance, 16:3 (2006), 519–547 | DOI | MR | Zbl
[5] L. Denis, C. Martini, “A theoretical framework for the pricing of contingent claims in the presence of model uncertainty”, Ann. Appl. Probab., 16:2 (2006), 827–852 | DOI | MR | Zbl
[6] L. G. Epstein, Shaolin Ji, “Ambiguous volatility and asset pricing in continuous time”, Rev. Financ. Stud., 26:7 (2013), 1740–1786 | DOI
[7] Xiao Fang, Shige Peng, Qi-Man Shao, Yongsheng Song, “Limit theorems with rate of convergence under sublinear expectations”, Bernoulli, 25:4A (2019), 2564–2596 | DOI | MR | Zbl
[8] H. Föllmer, A. Schied, Stochastic finance. An introduction in discrete time, 3rd rev. ed., Walter de Gruyter Co., Berlin, 2011, xii+544 pp. | DOI | MR | Zbl
[9] Mingshang Hu, Shige Peng, Yongsheng Song, “Stein type characterization for $G$-normal distributions”, Electron. Commun. Probab., 22 (2017), 24, 12 pp. | DOI | MR | Zbl
[10] P. J. Huber, Robust statistics, Wiley Ser. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1981, ix+308 pp. | DOI | MR | MR | Zbl | Zbl
[11] Hanqing Jin, Shige Peng, “Optimal unbiased estimation for maximal distribution”, Probab. Uncertain. Quant. Risk, 6:3 (2021), 189–198 | DOI
[12] J. Kerkhof, B. Melenberg, H. Schumacher, “Model risk and capital reserves”, J. Bank. Finance, 34:1 (2010), 267–279 | DOI
[13] N. V. Krylov, “On Shige Peng's central limit theorem”, Stochastic Process. Appl., 130:3 (2020), 1426–1434 | DOI | MR | Zbl
[14] K. Kuester, S. Mittnik, M. S. Paolella, “Value-at-risk prediction: a comparison of alternative strategies”, J. Financ. Econom., 4:1 (2006), 53–89 | DOI
[15] T. J. Lyons, “Uncertain volatility and the risk-free synthesis of derivatives”, Appl. Math. Finance, 2:2 (1995), 117–133 | DOI | Zbl
[16] S. Peng, “Backward SDE and related $g$-expectation”, Backward stochastic differential equations (Paris, 1995–1996), Pitman Res. Notes Math. Ser., 364, Longman, Harlow, 1997, 141–159 | MR | Zbl
[17] Shige Peng, “Filtration consistent nonlinear expectations and evaluations of contingent claims”, Acta Math. Appl. Sin. Engl. Ser., 20:2 (2004), 191–214 | DOI | MR | Zbl
[18] Shige Peng, “Nonlinear expectations and nonlinear Markov chains”, Chinese Ann. Math. Ser. B, 26:2 (2005), 159–184 | DOI | MR | Zbl
[19] Shige Peng, “$G$-expectation, $G$-Brownian motion and related stochastic calculus of {I}tô type”, Stochastic analysis and applications: The Abel Symposium 2005, Abel Symp., 2, Springer, Berlin, 2007, 541–567 | DOI | MR | Zbl
[20] Shige Peng, “Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation”, Stochastic Process. Appl., 118:12 (2008), 2223–2253 | DOI | MR | Zbl
[21] Shige Peng, “Theory, methods and meaning of nonlinear expectation theory”, in Chinese, Sci. Sin. Math., 47:10 (2017), 1223–1254 | DOI
[22] Shige Peng, Nonlinear expectations and stochastic calculus under uncertainty. With robust CLT and G-Brownian motion, Probab. Theory Stoch. Model., 95, Springer, Berlin, 2019, xiii+212 pp. | DOI | MR | Zbl
[23] Shige Peng, Shuzhen Yang, Jianfeng Yao, “Improving value-at-risk prediction under model uncertainty”, J. Financ. Econom., 2020, nbaa022, 32 pp., Publ. online | DOI
[24] Yongsheng Song, “Stein's method for law of large numbers under sublinear expectations”, Probab. Uncertain. Quant. Risk, 6:3 (2021), 199–212 | DOI
[25] Yongsheng Song, “Normal approximation by Stein's method under sublinear expectations”, Stochastic Process. Appl., 130:5 (2020), 2838–2850 | DOI | MR | Zbl
[26] P. Walley, Statistical reasoning with imprecise probabilities, Monogr. Statist. Appl. Probab., 42, Chapman and Hall, Ltd., London, 1991, xii+706 pp. | MR | Zbl