Mots-clés : the Legendre transformation.
@article{TVP_2021_66_4_a12,
author = {N. E. Kordzakhia and A. A. Novikov},
title = {On maximal inequalities for {Ornstein{\textendash}Uhlenbeck} processes with jumps},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {895--913},
year = {2021},
volume = {66},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a12/}
}
N. E. Kordzakhia; A. A. Novikov. On maximal inequalities for Ornstein–Uhlenbeck processes with jumps. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 895-913. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a12/
[1] J. Arias-de-Reyna, “On the theorem of Frullani”, Proc. Amer. Math. Soc., 109:1 (1990), 165–175 | DOI | MR | Zbl
[2] O. E. Barndorff-Nielsen, N. Shephard, “Modelling by Lévy processes for financial econometrics”, Lévy processes, Birkhäuser Boston, Boston, MA, 2001, 283–318 | DOI | MR | Zbl
[3] K. Borovkov, A. Novikov, “On a piece-wise deterministic Markov process model”, Statist. Probab. Lett., 53:4 (2001), 421–428 | DOI | MR | Zbl
[4] P. J. Brockwell, R. A. Davis, Yu Yang, “Estimation for nonnegative Lévy-driven CARMA processes”, J. Bus. Econom. Statist., 29:2 (2011), 250–259 | DOI | MR | Zbl
[5] D. L. Burkholder, “Distribution function inequalities for martingales”, Ann. Probability, 1 (1973), 19–42 | DOI | MR | Zbl
[6] M. O. Cáceres, A. A. Budini, “The generalized Ornstein–Uhlenbeck process”, J. Phys. A, 30:24 (1997), 8427–8444 | DOI | MR | Zbl
[7] B. Davis, “On the $L^{p}$ norms of stochastic integrals and other martingales”, Duke Math. J., 43:4 (1976), 697–704 | DOI | MR | Zbl
[8] G. Frullani, “Sopra gli integrali definiti”, Mem. Mat. Fis. Soc. Ital. Sci. Modena, 20 (1828), 44–48
[9] S. E. Graversen, G. Peskir, “Maximal inequalities for the Ornstein–Uhlenbeck process”, Proc. Amer. Math. Soc., 128:10 (2000), 3035–3041 | DOI | MR | Zbl
[10] M. Grigoriu, Applied non-Gaussian processes, Prentice-Hall PTR, Englewood Cliffs, NJ, 1995, xii+442 pp. | Zbl
[11] D. I. Hadjiev, “The first passage problem for generalized Ornstein–Uhlenbeck processes with non-positive jumps”, Séminaire de Probabilités XIX 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 80–90 | DOI | MR | Zbl
[12] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, Springer-Verlag, Berlin, 1987, xviii+601 pp. | DOI | MR | MR | MR | Zbl | Zbl
[13] Chen Jia, Guohuan Zhao, “Moderate maximal inequalities for the Ornstein–Uhlenbeck process”, Proc. Amer. Math. Soc., 148:8 (2020), 3607–3615 | DOI | MR | Zbl
[14] E. Lenglart, “Relation de domination entre deux processus”, Ann. Inst. H. Poincaré Sect. B (N.S.), 13:2 (1977), 171–179 | MR | Zbl
[15] Ya. A. Lyulko, A. N. Shiryaev, “Sharp maximal inequalities for stochastic processes”, Proc. Steklov Inst. Math., 287:1 (2014), 155–173 | DOI | DOI | MR | Zbl
[16] A. A. Novikov, “On the first passage time of an autoregressive process over a level and an application to a “disorder” problem”, Theory Probab. Appl., 35:2 (1991), 269–279 | DOI | MR | Zbl
[17] A. A. Novikov, “Martingales and first-passage problem for Ornstein–Uhlenbeck processes with a jump component”, Theory Probab. Appl., 48:2 (2004), 288–303 | DOI | DOI | MR | Zbl
[18] A. Novikov, R. E. Melchers, E. Shinjikashvili, N. Kordzakhia, “First passage time of filtered Poisson process with exponential shape function”, Probabilistic Eng. Mech., 20:1 (2005), 57–65 | DOI
[19] A. Osȩkowski, “Sharp maximal inequalities for the martingale square bracket”, Stochastics, 82:6 (2010), 589–605 | DOI | MR | Zbl
[20] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, 3rd ed., Springer-Verlag, Berlin, 1999, xiv+602 pp. | DOI | MR | Zbl
[21] K. Sato, M. Yamazato, “Stationary processes of Ornstein–Uhlenbeck type”, Probability theory and mathematical statistics (Tbilisi, 1982), Lecture Notes in Math., 1021, Springer, Berlin, 1983, 541–551 | DOI | MR | Zbl
[22] W. Schachermayer, F. Stebegg, “The sharp constant for the Burkholder–Davis–Gundy inequality and non-smooth pasting”, Bernoulli, 24:4A (2018), 2499–2530 | DOI | MR | Zbl
[23] Litan Yan, Bei Zhu, “$L^p$-estimates on diffusion processes”, J. Math. Anal. Appl., 303:2 (2005), 418–435 | DOI | MR | Zbl