A path formula for the sock sorting problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 889-894 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose that $n$ different pairs of socks are put in a tumble dryer. When the dryer is finished, socks are taken out one by one. If a sock matches one of the socks on the sorting table, both are removed; otherwise, it is put on the table until its partner emerges from the dryer. We note the number of socks on the table after each of the $2n$ socks is taken from the dryer, and we give an explicit formula for the probability that this sequence equals a given sequence of length $2n$.
Keywords: Daniel Bernoulli's matching problem, sorting of socks.
@article{TVP_2021_66_4_a11,
     author = {S. Korbel and P. M\"orters},
     title = {A path formula for the sock sorting problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {889--894},
     year = {2021},
     volume = {66},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a11/}
}
TY  - JOUR
AU  - S. Korbel
AU  - P. Mörters
TI  - A path formula for the sock sorting problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 889
EP  - 894
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a11/
LA  - ru
ID  - TVP_2021_66_4_a11
ER  - 
%0 Journal Article
%A S. Korbel
%A P. Mörters
%T A path formula for the sock sorting problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 889-894
%V 66
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a11/
%G ru
%F TVP_2021_66_4_a11
S. Korbel; P. Mörters. A path formula for the sock sorting problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 889-894. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a11/

[1] D. Bernoulli, “De usu algorithmi infinitesimalis in arte coniectandi specimen”, Die Werke von Daniel Bernoulli, v. 2, Gesammelten Werke Math. Phys. Fam. Bernoulli, Birkhäuser Verlag, Basel–Boston, MA, 1982, 276–287 | MR | Zbl

[2] S. Gilliand, Ch. Johnson, S. Rush, D. Wood, “The sock matching problem”, Involve, 7:5 (2014), 691–697 | DOI | MR | Zbl

[3] S. Korbel, Eine Pfadformel und ein Grenzwertsatz zum sock matching problem, Bachelorarbeit, Univ. zu Köln, 2020

[4] Wenbo V. Li, G. Pritchard, “A central limit theorem for the sock-sorting problem”, High dimensional probability (Oberwolfach, 1996), Prog. Probab., 43, Birkhäuser, Basel, 1998, 245–248 | MR | Zbl

[5] B. Pantić, O. Bodroža-Pantić, “A brief overview of the sock matching problem”, Ars Combin., 153 (2020), 261–270 ; (2016), 7 pp., arXiv: 1609.08353 | MR

[6] D. Steinsaltz, “Fluctuation bounds for sock-sorting and other stochastic processes”, Discrete Appl. Math., 86:1 (1998), 109–123 | DOI | MR | Zbl

[7] D. Steinsaltz, “Random time changes for sock-sorting and other stochastic process limit theorems”, Electron. J. Probab., 4 (1999), 14, 25 pp. | DOI | MR | Zbl