A path formula for the sock sorting problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 889-894
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $n$ different pairs of socks are put in a tumble dryer. When the dryer is finished, socks are taken out one by one. If a sock matches one of the socks on the sorting table, both are removed; otherwise, it is put on the table until its partner emerges from the dryer. We note the number of socks on the table after each of the $2n$ socks is taken from the dryer, and we give an explicit formula for the probability that this sequence equals a given sequence of length $2n$.
Keywords:
Daniel Bernoulli's matching problem, sorting of socks.
@article{TVP_2021_66_4_a11,
author = {S. Korbel and P. M\"orters},
title = {A path formula for the sock sorting problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {889--894},
publisher = {mathdoc},
volume = {66},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a11/}
}
S. Korbel; P. Mörters. A path formula for the sock sorting problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 889-894. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a11/