@article{TVP_2021_66_4_a11,
author = {S. Korbel and P. M\"orters},
title = {A path formula for the sock sorting problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {889--894},
year = {2021},
volume = {66},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a11/}
}
S. Korbel; P. Mörters. A path formula for the sock sorting problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 889-894. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a11/
[1] D. Bernoulli, “De usu algorithmi infinitesimalis in arte coniectandi specimen”, Die Werke von Daniel Bernoulli, v. 2, Gesammelten Werke Math. Phys. Fam. Bernoulli, Birkhäuser Verlag, Basel–Boston, MA, 1982, 276–287 | MR | Zbl
[2] S. Gilliand, Ch. Johnson, S. Rush, D. Wood, “The sock matching problem”, Involve, 7:5 (2014), 691–697 | DOI | MR | Zbl
[3] S. Korbel, Eine Pfadformel und ein Grenzwertsatz zum sock matching problem, Bachelorarbeit, Univ. zu Köln, 2020
[4] Wenbo V. Li, G. Pritchard, “A central limit theorem for the sock-sorting problem”, High dimensional probability (Oberwolfach, 1996), Prog. Probab., 43, Birkhäuser, Basel, 1998, 245–248 | MR | Zbl
[5] B. Pantić, O. Bodroža-Pantić, “A brief overview of the sock matching problem”, Ars Combin., 153 (2020), 261–270 ; (2016), 7 pp., arXiv: 1609.08353 | MR
[6] D. Steinsaltz, “Fluctuation bounds for sock-sorting and other stochastic processes”, Discrete Appl. Math., 86:1 (1998), 109–123 | DOI | MR | Zbl
[7] D. Steinsaltz, “Random time changes for sock-sorting and other stochastic process limit theorems”, Electron. J. Probab., 4 (1999), 14, 25 pp. | DOI | MR | Zbl