The life, work, and legacy of P. L. Chebyshev
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 636-656 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We survey briefly the life and work of P. L. Chebyshev and his ongoing influence. We discuss his contributions to probability, number theory, and mechanics; his pupils and mathematical descendants; and his role as the founding father of Russian mathematics in general and of the Russian school of probability in particular.
Keywords: distribution of prime numbers, Bienaymé–Chebyshev inequality, law of large numbers, central limit theorem, Chebyshev polynomials, the moment problem.
Mots-clés : Chebyshev alternant
@article{TVP_2021_66_4_a1,
     author = {N. H. Bingham},
     title = {The life, work, and legacy of {P.~L.~Chebyshev}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {636--656},
     year = {2021},
     volume = {66},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a1/}
}
TY  - JOUR
AU  - N. H. Bingham
TI  - The life, work, and legacy of P. L. Chebyshev
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 636
EP  - 656
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a1/
LA  - ru
ID  - TVP_2021_66_4_a1
ER  - 
%0 Journal Article
%A N. H. Bingham
%T The life, work, and legacy of P. L. Chebyshev
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 636-656
%V 66
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a1/
%G ru
%F TVP_2021_66_4_a1
N. H. Bingham. The life, work, and legacy of P. L. Chebyshev. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 636-656. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a1/

[1] N. I. Akhiezer, Lektsii po teorii approksimatsii, OGIZ, M.–L., 1947, 323 pp. ; N. I. Achieser, Theory of approximation, Frederick Ungar Publishing Co., New York, 1956, x+307 с. ; reprint: Dover Publications, Inc., New York, 1992, x+307 pp. | MR | Zbl | MR | Zbl

[2] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961, 310 pp. ; N. I. Akhiezer, The classical moment problem amd some related questions in analysis, Hafner Publishing Co., New York; Oliver Boyd, Edinburgh–London, 1965, x+253 с. ; reprint: Classics App. Math., 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2020, xiii+252 pp. | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[3] J. Bertrand, “Mémoire sur le nombre de valeurs que peut prendre une fonction quant on y permute des lettres qu'elle renferme”, J. Ec. Roy. Polytechnique, 18 (1845), 123–140

[4] Bienaymé, “Considérations à l'appui de la découverte de Laplace sur la loi de probabilités dans la méthode des moindres carrés”, C. R. Acad. Sci. Paris, 37 (1853), 309–324; J. Math. Pures Appl. (2), 12 (1867), 158–176

[5] P. Billingsley, Probability and measure, Wiley Ser. Probab. Math. Statist., 3rd ed., John Wiley Sons, Inc., New York, 1995, xiv+593 pp. ; 1st ed., 1979, xiv+515 pp. ; 2nd ed., 1986, xiv+622 pp. | MR | Zbl | MR | Zbl | MR | Zbl

[6] N. H. Bingham, “Szegő's theorem and its probabilistic descendants”, Probab. Surv., 9 (2012), 287–324 | DOI | MR | Zbl

[7] N. H. Bingham, “Multivariate prediction and matrix Szegő theory”, Probab. Surv., 9 (2012), 325–339 | DOI | MR | Zbl

[8] N. H. Bingham, Prediction theory for stationary functional time series, 2020, 20 pp., arXiv: 2011.09937

[9] N. H. Bingham, B. Missaoui, “Aspects of prediction”, J. Appl. Probab., 51A (2014), 189–201 | DOI | MR | Zbl

[10] R. P. Boas, “Review of ‘M. G. Krein, Chebyshev’s and Markov's ideas in the theory of limiting value of integrals and their further development, Usp. Mat. Nauk, 44 (1951), 3–120'”, Math. Reviews, 13 (1952), 445 | MR

[11] C. Brezinski, History of continued fractions and Padé approximants, Springer Ser. Comput. Math., 12, Springer-Verlag, Berlin, 1991, vi+551 pp. | DOI | MR | Zbl

[12] P. L. Butzer, F. Jongmans, “P. L. Chebyshev (1821–1894) and his contacts with Western European scientists”, Historia Math., 16:1 (1989), 46–68 | DOI | MR | Zbl

[13] P. Butzer, F. Jongmans, “P. L. Chebyshev (1821–1894). A guide to his life and work”, J. Approx. Theory, 96:1 (1999), 111–138 | DOI | MR | Zbl

[14] T. Carleman, Les fonctions quasi-analytiques, Gauthier-Villars, Paris, 1926, 115 pp. | Zbl

[15] P. Tchebichef [Chebyshev], “Démonstration élémentaire d'une proposition générale de la théorie des probabilités”, J. Reine Angew. Math., 33 (1846), 259–267 ; P. L. Chebyshev, “Elementarnoe dokazatelstvo odnogo obschego predlozheniya teorii veroyatnostei”, Polnoe sobranie sochinenii, v. II, M.–L., Izd-vo AN SSSR, 1947, 14–22 | DOI | MR | Zbl

[16] P. L. Tchébychew [Chebyshev], “Mémoire sur les nombres premiers”, Mem. pres. Acad. Imp. Sci. St. Petersb., VII (1850), 17–33; P. L. Tchébichef [Chebyshev], J. Math. Pures Appl. (1), 17 (1852), 366–390; P. L. Chebyshev, “O prostykh chislakh”, Polnoe sobranie sochinenii, v. I, M.–L., Izd-vo AN SSSR, 1944, 191–208

[17] P. L. Chebyshev, “O nepreryvnykh drobyakh”, Uch. zap. Imp. Akad. nauk, III (1855), 636–664; Полное собрание сочинений, т. II, М.–Л., Изд-во АН СССР, 1947, 103–126; P. L. Tchebichef [Chebyshev], “Sur les fractions continues”, J. Math. Pures Appl. (2), 3 (1858), 289–323

[18] P. Tchébychev [Chebyshev], “Sur les questions de minima qui se rattachent à la représentation approximative des fonctions”, Mem. Acad. Imp. Sci. St. Petersb. 6 Ser., 7 (1859), 199–291; P. L. Chebyshev, “Voprosy o naimenshikh velichinakh, svyazannye s priblizhennym predstavleniem funktsii”, Polnoe sobranie sochinenii, v. II, M.–L., Izd-vo AN SSSR, 1947, 151–236; Полное собрание сочинений, т. II, М.–Л., Изд-во АН СССР, 1947, 431–437

[19] P. Tchébychef [Chebyshev], “Des valeurs moyennes”, J. Math. Pures Appl. (2), 12 (1867), 177–184

[20] P. L. Tchebichef [Chebyshev], “Sur les valeurs limites des intégrales”, J. Math. Pures Appl. (2), 19 (1874), 157–160 ; P. L. Chebyshev, “O predelnykh velichinakh integralov”, Polnoe sobranie sochinenii, v. III, M.–L., Izd-vo AN SSSR, 1948, 63–65 | Zbl

[21] P. L. Chebyshev, O dvukh teoremakh otnositelno veroyatnostei, Zap. Imp. Akad. Nauk, LV, prilozhenie 6, Imp. Akad. Nauk, SPb., 1887, 16 pp. ; Полное собрание сочинений, т. III, М.–Л., Изд-во АН СССР, 1948, 229–239; P. Tchebycheff [Chebyshev], “Sur deux théorèmes relatifs aux probabilités”, Acta Math., 14:1 (1890–1891), 305–315 | Zbl | DOI | MR | Zbl

[22] P. L. Tchebychef [Chebyshev], Oeuvres, v. 1, 2, eds. A. Markoff, N. Sonin, Chelsea Publ. Co., New York, 1962, vi+714 pp., xxiv+736 pp. | MR | Zbl

[23] P. L. Chebyshev, The theory of probability. Lectures delivered in 1879-1880 as taken down by A. M. Liapunov, Deutsche Hochschulschrift., 2665, Hänsel-Hohenhausen, Egelsbach, 1999, 193 pp. | MR | Zbl

[24] P. L. Chebyshev, Polnoe sobranie sochinenii, v. 1, Izd-vo AN SSSR, M.–L., 1946, 342 pp. ; т. 2, 1947, 520 с. ; т. 3, 1948, 414 с. ; т. 4, 1948, 255 с. ; т. 5, 1951, 474 с. | MR | Zbl | Zbl | Zbl

[25] P. J. Davis, Interpolation and approximation, Blaisdell Publishing Co., New York–Toronto–London, 1963, xiv+393 pp. ; 2nd ed., Dover Publications, Inc., New York, 1975, xv+393 pp. | MR | Zbl | Zbl

[26] H. Dym, H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Probab. Math. Statist., 31, Academic Press, New York–London, 1976, xi+335 pp. | MR | Zbl

[27] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984, 528 pp. ; W. Feller, An introduction to probability theory and its applications, т. 1, 3rd ed., John Wiley Sons, Inc., New York–London–Sydney, 1968, xviii+509 с. ; 1st ed., 1950, xii+419 pp. ; 2nd ed., 1957, xv+461 pp. | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[28] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl

[29] W. Hahn, Theory and application of Liapunov's direct method, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963, x+182 pp. | MR | Zbl

[30] G. H. Hardy, The integration of functions of a single variable, Cambridge Tracts in Math. and Math. Phys., 2, Cambridge Univ. Press, Cambridge, 1905, viii+53 pp. ; 2nd ed., 1916, viii+67 pp. | Zbl | MR | Zbl

[31] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford Univ. Press, Oxford, 2008, xxii+621 pp. | MR | Zbl

[32] T. Hawkins, Lebesgue's theory of integration. Its origin and development, The Univ. of Wisconsin Press, Madison, WI–London, 1970, xv+227 pp. | MR | Zbl

[33] C. C. Heyde, E. Seneta, I. J. Bienaymé. Statistical theory anticipated, Stud. Hist. Math. Phys. Sci., 3, Springer-Verlag, New York–Heidelberg, 1977, xiv+172 pp. | DOI | MR | Zbl

[34] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl

[35] Zh.-P. Kakhan, Sluchainye funktsionalnye ryady, Mir, M., 1973, 302 pp. ; J.-P. Kahane, Some random series of functions, Cambridge Stud. Adv. Math., 5, 2nd ed., Cambridge Univ. Press, Cambridge, 1985, xiv+305 с. ; 1st ed., D. C. Heath and Co., Lexington, MA, 1968, viii+184 pp. | MR | Zbl | MR | Zbl | MR | Zbl

[36] S. Karlin, W. J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure Appl. Math., 15, Interscience Publishers John Wiley Sons, New York–London–Sydney, 1966, xviii+586 pp. | MR | Zbl

[37] S. Karlin, J. L. McGregor, “The differential equations of birth-and-death processes and the Stieltjes moment problem”, Trans. Amer. Math. Soc., 85:2 (1957), 489–546 | DOI | MR | Zbl

[38] S. Karlin, H. M. Taylor, A first course in stochastic processes, 2nd ed., Academic Press, New York–London, 1975, xvii+557 pp. | MR | Zbl

[39] J. G. Kemeny, J. L. Snell, Finite Markov chains, Univ. Ser. Undergrad. Math., Van Nostrand Co., Inc., Princeton, NJ–Toronto–London–New York, 1960, viii+210 pp. | MR | MR | Zbl | Zbl

[40] J. G. Kemeny, J. L. Snell, A. W. Knapp, Denumerable Markov chains, Univ. Ser. Higher Math., Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1966, xi+439 pp. | MR | MR | Zbl | Zbl

[41] A. B. Kempe, How to draw a straight line. A lecture on linkages, Macmillan and Co., London, 1877, 51 pp.

[42] S. Khrushchev, Orthogonal polynomials and continued fractions. From Euler's point of view, Encyclopedia Math. Appl., 122, Cambridge Univ. Press, Cambridge, 2008, xvi+478 pp. | MR | Zbl

[43] J. F. C. Kingman, “On inequalities of the Tchebychev type”, Proc. Cambridge Phil. Soc., 59:1 (1963), 135–146 | DOI | MR | Zbl

[44] T. H. Kjeldsen, “The early history of the moment problem”, Historia Math., 20:1 (1993), 19–44 | DOI | MR | Zbl

[45] P. Koosis, The logarithmic integral, v. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988, xvi+606 pp. | DOI | MR | Zbl

[46] M. G. Kreĭn, “The ideas of P. L. Chebyshev and A. A. Markov in the theory of limiting values of integrals and their further development”, Amer. Math. Soc. Transl. Ser. 2, 12, Amer. Math. Soc., Providence, RI, 1959, 1–121 | DOI | MR | Zbl

[47] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2 Bände, 2nd ed., Chelsea Publishing Co., New York, 1953, xviii+564 pp.; i–ix and 565–1001 pp. ; 1st ed., B. G. Teubner, Leipzig–Berlin, 1909, xviii+564 pp.; i–ix and 567–961 pp. | MR | Zbl | Zbl

[48] G. G. Lorentz, Bernstein polynomials, Math. Expo., 8, Univ. of Toronto Press, Toronto, 1953, x+130 pp. | MR | Zbl

[49] G. G. Lorentz, Approximation of functions, 2nd ed., Chelsea Publishing Co., New York, 1986, x+188 pp. ; 1st ed., Holt, Rinehart and Winston, New York–Chicago, IL–Toronto, ON, 1966, ix+188 pp. | MR | Zbl | MR | Zbl

[50] L. E. Maistrov, Probability theory: a historical sketch, Probab. Math. Statist., 23, Academic Press, New York–London, 1974, xiii+281 pp. | MR | MR | Zbl | Zbl

[51] M. B. Marcus, “Book review: H. Dym, H. P. McKean, Gaussian processes, function theory, and the inverse spectral problem”, Ann. Probab., 5:6 (1977), 1047–1051 | DOI

[52] A. A. Markow, Wahrscheinlichkeitsrechnung, B. G. Teubner, Leipzig–Berlin, 1912, vii+318 pp. | Zbl | Zbl

[53] M. Menshikov, S. Popov, A. Wade, Non-homogeneous random walks. Lyapunov function methods for near-critical stochastic systems, Cambridge Tracts in Math., 209, Cambridge Univ. Press, Cambridge, 2017, xviii+363 pp. | DOI | MR | Zbl

[54] S. Meyn, R. L. Tweedie, Markov chains and stochastic stability, 2nd ed., Cambridge Univ. Press, Cambridge, 2009, xxviii+594 pp. ; Comm. Control Engrg. Ser., 1st ed., Springer-Verlag London, Ltd., London, 1993, xvi+548 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[55] I. P. Natanson, Constructive function theory, v. 1, Uniform approximation, Frederick Ungar Publishing Co., New York, 1964, ix+232 pp. | MR | MR | Zbl | Zbl

[56] I. P. Natanson, Constructive function theory, v. 2, Approximation in mean, Frederick Ungar Publishing Co., New York, 1965, 176 pp. | MR | MR | Zbl | Zbl

[57] I. P. Natanson, Constructive function theory, v. 3, Interpolation and approximation quadratures, Frederick Ungar Publishing Co., New York, 1965, 176 pp. | MR | MR | Zbl | Zbl

[58] Kh. H. Ondar (ed.), The correspondence between A. A. Markov and A. A. Chuprov on the theory of probability and mathematical statistics, Springer-Verlag, New York–Berlin, 1981, xvii+181 pp. | MR | Zbl | Zbl

[59] J. O'Rourke, How to fold it. The mathematics of linkages, origami and polyhedra, Cambridge Univ. Press, Cambridge, 2011, xii+177 pp. | MR | Zbl

[60] I. V. Ostrovskii, “M. G. Krein's investigations in the theory of entire and meromorphic functions and their further development”, Ukrainian Math. J., 46:1-2 (1994), 87–100 | DOI | MR | Zbl

[61] V. V. Petrov, Sums of independent random variables, Ergeb. Math. Grenzgeb., 82, Springer-Verlag, New York–Heidelberg, 1975, x+346 pp. | DOI | MR | MR | Zbl | Zbl

[62] M. Putinar, K. Schmüdgen, “Multivariate determinateness”, Indiana Univ. Math. J., 57:6 (2008), 2931–2968 | DOI | MR | Zbl

[63] S. Ramanujan, “A proof of Bertrand's postulate”, J. Indian Math. Soc., 11 (1919), 181–182; Collected papers of Srinivasa Ramanujan, Cambridge Univ. Press, Cambridge, 1927, 208–209 | MR | Zbl

[64] M. Reed, B. Simon, Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York–London, 1975, xv+361 pp. | MR | MR | Zbl

[65] J. F. Ritt, Integration in finite terms. Liouville's theory of elementary methods, Columbia Univ. Press, New York, NY, 1948, ix+100 pp. | MR | Zbl

[66] C. A. Rogers, J. E. Jayne, “$K$-analytic sets”, Analytic sets, Academic Press, London, 1980, 1–181 | MR | Zbl

[67] H. E. Rose, A course in number theory, Oxford Univ. Press, New York, 1988, xii+354 pp. | MR | Zbl

[68] W. Rudin, Real and complex analysis, McGraw-Hill Ser. in Higher Math., 2nd ed., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1974, xii+452 pp. ; 1st ed., McGraw-Hill Book Co., New York–Toronto, ON–London, 1966, xi+412 pp. | MR | Zbl | MR | Zbl

[69] H. H. Schaefer, Banach lattices and positive operators, Grundlehren Math. Wiss., 215, Springer-Verlag, New York–Heidelberg, 1974, xi+376 pp. | DOI | MR | Zbl

[70] W. Schoutens, Stochastic processes and orthogonal polynomials, Lect. Notes Stat., 146, Springer-Verlag, New York, 2000, xiv+163 pp. | DOI | MR | Zbl

[71] F. Schweiger, Multidimensional continued fractions, Oxford Sci. Publ., Oxford Univ. Press, Oxford, 2000, viii+234 pp. | MR | Zbl

[72] H. L. Seal, “Studies in the history of probability and statistics. XV. The historical development of the Gauss linear model”, Biometrika, 54:1-2 (1967), 1–24 | DOI | MR | Zbl

[73] E. Seneta, Non-negative matrices and Markov chains, Springer Ser. Statist., 2nd ed., Springer-Verlag, New York, 1981, xiii+279 pp. | DOI | MR | Zbl

[74] E. Seneta, “The central limit theorem and linear least squares in pre-revolutionary Russia: the background”, Math. Sci., 9:1 (1984), 37–77 | MR | Zbl

[75] E. Seneta, “Markov and the birth of chain dependence theory”, Internat. Stat. Review, 64:3 (1996), 255–263 | DOI | Zbl

[76] O. B. Sheynin, “A. A. Markov's work on probability”, Arch. Hist. Exact Sci., 39:4 (1989), 337–377 | DOI | MR | Zbl

[77] O. B. Sheynin, “Chebyshev's lectures on the theory of probability”, Arch. Hist. Exact Sci., 46:4 (1994), 321–340 | DOI | MR | Zbl

[78] J. A. Shohat, J. D. Tamarkin, The problem of moments, Amer. Math. Soc. Math. Surv., 1, Amer. Math. Soc., New York, 1943, xiv+140 pp. | MR | Zbl

[79] W. Sierpiński, Leçons sur les nombres transfinis, Gauthier-Villars, Paris, 1928, vi+240 pp. | MR | Zbl

[80] W. Sierpiński, Elementary theory of numbers, Monogr. Mat., PWN, 1964, Warsaw pp. | MR | Zbl

[81] B. Simon, “The classical moment problem as a self-adjoint finite-difference operator”, Adv. Math., 137:1 (1998), 82–203 | DOI | MR | Zbl

[82] B. Simon, Orthogonal polynomials on the unit circle, v. 1, Amer. Math. Soc. Colloq. Publ., 54, Classical theory, Part 1, Amer. Math. Soc., Providence, RI, 2005, xxvi+466 pp. ; v. 2, 54, Spectral theory, Part 2, i–xxii and 467–1044 pp. | MR | Zbl | DOI | MR | Zbl

[83] B. Simon, Szegő's theorem and its descendants. Spectral theory for $L^2$ perturbations of orthogonal polynomials, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 2011, xii+650 pp. | MR | Zbl

[84] T.-J. Stieltjes, “Recherches sur les fractions continues”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 8:4 (1894), J1–J122 ; Suite et fin, 9:1 (1895), A1–A47 | DOI | MR | Zbl | DOI | MR

[85] S. M. Stigler, The history of statistics: The measurement of uncertainty before 1900, The Belknap Press of Harvard Univ. Press, Cambridge, MA, 1986, xviii+410 pp. | MR | Zbl

[86] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[87] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Grad. Stud. Math., 163, 3rd ed., Amer. Math. Soc., Providence, RI, 2015, xxiv+629 pp. | DOI | MR | Zbl

[88] E. Ch. Titchmarsh, Teoriya funktsii, 2-e izd., Nauka, M., 1980, 464 pp. ; E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford Univ. Press, Oxford, 1939, x+454 с. ; 1st ed., 1932, x+454 pp. | MR | Zbl | MR | Zbl | Zbl

[89] P. Whittle, “A multivariate generalization of Tchebichev's inequality”, Quart. J. Math. Oxford Ser. (2), 9:1 (1958), 232–240 | DOI | MR | Zbl

[90] D. V. Widder, The Laplace transform, Princeton Math. Ser., 6, Princeton Univ. Press, Princeton, NJ, 1941, x+406 pp. | MR | Zbl