On pathwise uniqueness of solutions for multidimensional McKean–Vlasov equation
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 581-588 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Pathwise uniqueness for the multidimensional stochastic McKean–Vlasov equation is established under moderate regularity conditions on the drift and diffusion coefficients. Both drift and diffusion depend on the marginal measure of the solution. It is assumed that both coefficients are bounded, and, moreover, the drift is Dini-continuous in the state variable, and the diffusion satisfies the Lipschitz condition and is also continuous in time and uniformly nondegenerate. This is the classical McKean–Vlasov setting, that is, the coefficients of the equation are represented as integrals over the marginal distributions of the process.
Keywords: McKean–Vlasov's equation, strong uniqueness.
@article{TVP_2021_66_3_a9,
     author = {A. Yu. Veretennikov},
     title = {On pathwise uniqueness of solutions for multidimensional {McKean{\textendash}Vlasov} equation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {581--588},
     year = {2021},
     volume = {66},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a9/}
}
TY  - JOUR
AU  - A. Yu. Veretennikov
TI  - On pathwise uniqueness of solutions for multidimensional McKean–Vlasov equation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 581
EP  - 588
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a9/
LA  - ru
ID  - TVP_2021_66_3_a9
ER  - 
%0 Journal Article
%A A. Yu. Veretennikov
%T On pathwise uniqueness of solutions for multidimensional McKean–Vlasov equation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 581-588
%V 66
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a9/
%G ru
%F TVP_2021_66_3_a9
A. Yu. Veretennikov. On pathwise uniqueness of solutions for multidimensional McKean–Vlasov equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 581-588. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a9/

[1] K. Bahlali, M. A. Mezerdi, B. Mezerdi, “Stability of McKean–Vlasov stochastic differential equations and applications”, Stoch. Dyn., 20:1 (2020), 2050007, 19 pp. | DOI | MR | Zbl

[2] P.-E. Chaudru de Raynal, “Strong well-posedness of McKean–Vlasov stochastic differential equations with Hölder drift”, Stochastic Process. Appl., 130:1 (2020), 79–107 | DOI | MR | Zbl

[3] Tzuu-Shuh Chiang, “McKean–Vlasov equations with discontinuous coefficients”, Soochow J. Math., 20:4 (1994), 507–526 | MR | Zbl

[4] T. Funaki, “A certain class of diffusion processes associated with nonlinear parabolic equations”, Z. Wahrsch. Verw. Gebiete, 67:3 (1984), 331–348 | DOI | MR | Zbl

[5] W. Hammersley, D. Šiška, L. Szpruch, McKean–Vlasov SDEs under measure dependent Lyapunov conditions, arXiv: 1802.03974

[6] M. D. Ivanovich, “O kharaktere nepreryvnosti reshenii parabolicheskikh uravnenii vtorogo poryadka”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1966, no. 4, 31–41 | MR | Zbl

[7] N. V. Krylov, Controlled diffusion processes, Stoch. Model. Appl. Probab., 14, 2nd ed., Springer-Verlag, Berlin, 2009, xii+308 pp. | MR | MR | Zbl | Zbl

[8] H. P. McKean, Jr., “A class of Markov processes associated with nonlinear parabolic equations”, Proc. Nat. Acad. Sci. U.S.A., 56:6 (1966), 1907–1911 | DOI | MR | Zbl

[9] S. Mehri, M. Scheutzow, W. Stannat, B. Z. Zangeneh, “Propagation of chaos for stochastic spatially structured neuronal networks with delay driven by jump diffusions”, Ann. Appl. Probab., 30:1 (2020), 175–207 | DOI | MR | Zbl

[10] S. Mehri, W. Stannat, “Weak solutions to Vlasov–McKean equations under Lyapunov-type conditions”, Stoch. Dyn., 19:6 (2019), 1950042, 23 pp. | DOI | MR | Zbl

[11] Yu. S. Mishura, A. Yu. Veretennikov, “Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations”, Theor. Probability and Math. Statist., 103 (2020), 59–101

[12] A. N. Shiryaev, Probability, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1996, xvi+623 pp. | DOI | MR | MR | Zbl | Zbl

[13] V. A. Solonnikov, “On boundary value problems for linear parabolic systems of differential equations of general form”, Proc. Steklov Inst. Math., 83 (1965), 1–184 | MR | Zbl

[14] A.-S. Sznitman, “Topics in propagation of chaos”, École d'Été de Probabilités de Saint-Flour XIX–1989, Lecture Notes in Math., 1464, Springer, Berlin, 1991, 165–251 | DOI | MR | Zbl

[15] A. Yu. Veretennikov, “Parabolic equations and Itô's stochastic equations with coefficients discontinuous in the time variable”, Math. Notes, 31:4 (1982), 278–283 | DOI | MR | Zbl

[16] A. Yu. Veretennikov, “On ergodic measures for McKean–Vlasov stochastic equations”, Monte Carlo and quasi-Monte Carlo methods 2004, Springer, Berlin, 2006, 471–486 | DOI | MR | Zbl

[17] T. Yamada, S. Watanabe, “On the uniqueness of solutions of stochastic differential equations”, J. Math. Kyoto Univ., 11 (1971), 155–167 | DOI | MR | Zbl

[18] A. K. Zvonkin, “A transformation of the phase space of a diffusion process that removes the drift”, Math. USSR-Sb., 22:1 (1974), 129–149 | DOI | MR | Zbl