@article{TVP_2021_66_3_a9,
author = {A. Yu. Veretennikov},
title = {On pathwise uniqueness of solutions for multidimensional {McKean{\textendash}Vlasov} equation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {581--588},
year = {2021},
volume = {66},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a9/}
}
A. Yu. Veretennikov. On pathwise uniqueness of solutions for multidimensional McKean–Vlasov equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 581-588. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a9/
[1] K. Bahlali, M. A. Mezerdi, B. Mezerdi, “Stability of McKean–Vlasov stochastic differential equations and applications”, Stoch. Dyn., 20:1 (2020), 2050007, 19 pp. | DOI | MR | Zbl
[2] P.-E. Chaudru de Raynal, “Strong well-posedness of McKean–Vlasov stochastic differential equations with Hölder drift”, Stochastic Process. Appl., 130:1 (2020), 79–107 | DOI | MR | Zbl
[3] Tzuu-Shuh Chiang, “McKean–Vlasov equations with discontinuous coefficients”, Soochow J. Math., 20:4 (1994), 507–526 | MR | Zbl
[4] T. Funaki, “A certain class of diffusion processes associated with nonlinear parabolic equations”, Z. Wahrsch. Verw. Gebiete, 67:3 (1984), 331–348 | DOI | MR | Zbl
[5] W. Hammersley, D. Šiška, L. Szpruch, McKean–Vlasov SDEs under measure dependent Lyapunov conditions, arXiv: 1802.03974
[6] M. D. Ivanovich, “O kharaktere nepreryvnosti reshenii parabolicheskikh uravnenii vtorogo poryadka”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1966, no. 4, 31–41 | MR | Zbl
[7] N. V. Krylov, Controlled diffusion processes, Stoch. Model. Appl. Probab., 14, 2nd ed., Springer-Verlag, Berlin, 2009, xii+308 pp. | MR | MR | Zbl | Zbl
[8] H. P. McKean, Jr., “A class of Markov processes associated with nonlinear parabolic equations”, Proc. Nat. Acad. Sci. U.S.A., 56:6 (1966), 1907–1911 | DOI | MR | Zbl
[9] S. Mehri, M. Scheutzow, W. Stannat, B. Z. Zangeneh, “Propagation of chaos for stochastic spatially structured neuronal networks with delay driven by jump diffusions”, Ann. Appl. Probab., 30:1 (2020), 175–207 | DOI | MR | Zbl
[10] S. Mehri, W. Stannat, “Weak solutions to Vlasov–McKean equations under Lyapunov-type conditions”, Stoch. Dyn., 19:6 (2019), 1950042, 23 pp. | DOI | MR | Zbl
[11] Yu. S. Mishura, A. Yu. Veretennikov, “Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations”, Theor. Probability and Math. Statist., 103 (2020), 59–101
[12] A. N. Shiryaev, Probability, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1996, xvi+623 pp. | DOI | MR | MR | Zbl | Zbl
[13] V. A. Solonnikov, “On boundary value problems for linear parabolic systems of differential equations of general form”, Proc. Steklov Inst. Math., 83 (1965), 1–184 | MR | Zbl
[14] A.-S. Sznitman, “Topics in propagation of chaos”, École d'Été de Probabilités de Saint-Flour XIX–1989, Lecture Notes in Math., 1464, Springer, Berlin, 1991, 165–251 | DOI | MR | Zbl
[15] A. Yu. Veretennikov, “Parabolic equations and Itô's stochastic equations with coefficients discontinuous in the time variable”, Math. Notes, 31:4 (1982), 278–283 | DOI | MR | Zbl
[16] A. Yu. Veretennikov, “On ergodic measures for McKean–Vlasov stochastic equations”, Monte Carlo and quasi-Monte Carlo methods 2004, Springer, Berlin, 2006, 471–486 | DOI | MR | Zbl
[17] T. Yamada, S. Watanabe, “On the uniqueness of solutions of stochastic differential equations”, J. Math. Kyoto Univ., 11 (1971), 155–167 | DOI | MR | Zbl
[18] A. K. Zvonkin, “A transformation of the phase space of a diffusion process that removes the drift”, Math. USSR-Sb., 22:1 (1974), 129–149 | DOI | MR | Zbl