Some asymptotic properties between smooth empirical and quantile processes for dependent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 565-580 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\widehat F_n$ be the smooth empirical estimator obtained by integrating a kernel type density estimator based on a random sample of size $n$ from continuous distribution function $F$. The almost sure deviation between smooth empirical and smooth quantile processes is investigated under $\phi$-mixing and strong mixing conditions. We derive a pointwise as well as a uniform Bahadur–Kieffer type representation for smooth quantiles under cases of $\phi$-mixing and strong mixing. These results extend those of Babu and Singh [J. Multivariate Anal., 8 (1978), pp. 532–549] and Ralescu [J. Statist. Plann. Inference, 32 (1992), pp. 243–258].
Keywords: kernel density estimator, almost sure deviation, smooth empirical process, smooth quantile process.
@article{TVP_2021_66_3_a8,
     author = {S. Sun and W. Zhu},
     title = {Some asymptotic properties between smooth empirical and quantile processes for dependent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {565--580},
     year = {2021},
     volume = {66},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a8/}
}
TY  - JOUR
AU  - S. Sun
AU  - W. Zhu
TI  - Some asymptotic properties between smooth empirical and quantile processes for dependent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 565
EP  - 580
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a8/
LA  - ru
ID  - TVP_2021_66_3_a8
ER  - 
%0 Journal Article
%A S. Sun
%A W. Zhu
%T Some asymptotic properties between smooth empirical and quantile processes for dependent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 565-580
%V 66
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a8/
%G ru
%F TVP_2021_66_3_a8
S. Sun; W. Zhu. Some asymptotic properties between smooth empirical and quantile processes for dependent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 565-580. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a8/

[1] A. Azzalini, Efficiency of the kernel method for estimating a distribution function and percentage points, Unpubl. rep., 1979, 14 pp. http://azzalini.stat.unipd.it/Vintage/azzalini-1979.pdf

[2] A. Azzalini, “A note on the estimation of a distribution function and quantiles by a kernel method”, Biometrika, 68 (1981), 326–328 | DOI | MR

[3] G. J. Babu, K. Singh, “On deviations between empirical and quantile processes for mixing random variables”, J. Multivariate Anal., 8:4 (1978), 532–549 | DOI | MR | Zbl

[4] R. R. Bahadur, “A note on quantiles in large samples”, Ann. Math. Statist., 37:3 (1966), 577–580 | DOI | MR | Zbl

[5] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl

[6] P. Doukhan, Mixing. Properties and examples, Lect. Notes Stat., 85, Springer-Verlag, New York, 1994, xii+142 pp. | DOI | MR | Zbl

[7] E. Eberlein, M. S. Taqqu (eds.), Dependence in probability and statistics. A survey of recent results (Oberwolfach, 1985), Progr. Probab. Statist., 11, Birkhäuser Boston, Inc., Boston, MA, 1986, xii+473 pp. | DOI | MR | Zbl

[8] M. Falk, “Relative efficiency and defficiency of kernel type estimators of smooth distribution functions”, Statist. Neerlandica, 37:2 (1983), 73–83 | DOI | MR | Zbl

[9] M. Falk, R.-D. Reiss, “Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates”, Ann. Probab., 17:1 (1989), 362–371 | DOI | MR | Zbl

[10] L. T. Fernholz, “Almost sure convergence of smoothed empirical distribution functions”, Scand. J. Statist., 18:3 (1991), 255–262 | MR | Zbl

[11] J. Kiefer, “On Bahadur's representation of sample quantiles”, Ann. Math. Statist., 38:5 (1967), 1323–1342 | DOI | MR | Zbl

[12] J. Kiefer, “Deviations between the sample quantile process and the sample $\mathrm{df}$”, Nonparametric techniques in statistical inference (Indiana Univ., Bloomington, IN, 1969), Cambridge Univ. Press, London, 1970, 299–319 | MR | Zbl

[13] Cheun-Der Lea, M. L. Puri, “Asymptotic properties of perturbed empirical distribution functions evaluated at a random point”, J. Statist. Plann. Inference, 19:2 (1988), 201–215 | DOI | MR | Zbl

[14] E. A. Nadaraya, “Some new estimates for distribution function”, Theory Probab. Appl., 9:3 (1964), 497–500 | DOI | MR | Zbl

[15] M. L. Puri, S. S. Ralescu, “Central limit theorem for perturbed empirical distribution functions evaluated at a random point”, J. Multivariate Anal., 19:2 (1986), 273–279 | DOI | MR | Zbl

[16] S. S. Ralescu, “Asymptotic deviation between perturbed empirical and quantile processes”, J. Statist. Plann. Inference, 32:2 (1992), 243–258 | DOI | MR | Zbl

[17] S. S. Ralescu, M. L. Puri, “Weak convergence of sequences of first passage processes and applications”, Stochastic Process. Appl., 62:2 (1996), 327–345 | DOI | MR | Zbl

[18] S. S. Ralescu, Shan Sun, “Necessary and sufficient conditions for the asymptotic normality of perturbed sample quantiles”, J. Statist. Plann. Inference, 35:1 (1993), 55–64 | DOI | MR | Zbl

[19] R.-D. Reiss, “Nonparametric estimation of smooth distribution functions”, Scand. J. Statist., 8:2 (1981), 116–119 | MR | Zbl

[20] M. Rosenblatt, “A central limit theorem and a strong mixing condition”, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 43–47 | DOI | MR | Zbl

[21] G. R. Shorack, J. A. Wellner, Empirical processes with applications to statistics, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1986, xxxviii+938 pp. | MR | Zbl

[22] Shan Sun, “Asymptotic behavior of the perturbed empirical distribution function evaluated at a random point for absolutely regular sequences”, J. Multivariate Anal., 47:2 (1993), 230–249 | DOI | MR | Zbl

[23] Shan Sun, “Central limit theorem of the perturbed sample quantile for a sequence of $m$-dependent nonstationary random process”, Teoriya veroyatn. i ee primen., 40:1 (1995), 143–158 | MR | Zbl

[24] Shan Sun, “Perturbed empirical distribution functions and quantiles under dependence”, J. Theoret. Probab., 8:4 (1995), 763–777 | DOI | MR | Zbl

[25] Shan Sun, M. C. A. van Zuijlen, “Limiting behavior of the perturbed empirical distribution functions evaluated at a random point under dependence”, Math. Methods Statist., 3:2 (1994), 149–162 | MR | Zbl

[26] B. B. Winter, “Convergence rate of perturbed empirical distribution functions”, J. Appl. Probab., 16:1 (1979), 163–173 | DOI | MR | Zbl

[27] H. Yamato, “Uniform convergence of an estimator of a distribution function”, Bull. Math. Statist., 15:3-4 (1973), 69–78 | DOI | MR | Zbl

[28] J. E. Yukich, “A note on limit theorems for perturbed empirical processes”, Stochastic Process. Appl., 33:1 (1989), 163–173 | DOI | MR | Zbl