@article{TVP_2021_66_3_a8,
author = {S. Sun and W. Zhu},
title = {Some asymptotic properties between smooth empirical and quantile processes for dependent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {565--580},
year = {2021},
volume = {66},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a8/}
}
TY - JOUR AU - S. Sun AU - W. Zhu TI - Some asymptotic properties between smooth empirical and quantile processes for dependent random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 565 EP - 580 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a8/ LA - ru ID - TVP_2021_66_3_a8 ER -
S. Sun; W. Zhu. Some asymptotic properties between smooth empirical and quantile processes for dependent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 565-580. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a8/
[1] A. Azzalini, Efficiency of the kernel method for estimating a distribution function and percentage points, Unpubl. rep., 1979, 14 pp. http://azzalini.stat.unipd.it/Vintage/azzalini-1979.pdf
[2] A. Azzalini, “A note on the estimation of a distribution function and quantiles by a kernel method”, Biometrika, 68 (1981), 326–328 | DOI | MR
[3] G. J. Babu, K. Singh, “On deviations between empirical and quantile processes for mixing random variables”, J. Multivariate Anal., 8:4 (1978), 532–549 | DOI | MR | Zbl
[4] R. R. Bahadur, “A note on quantiles in large samples”, Ann. Math. Statist., 37:3 (1966), 577–580 | DOI | MR | Zbl
[5] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl
[6] P. Doukhan, Mixing. Properties and examples, Lect. Notes Stat., 85, Springer-Verlag, New York, 1994, xii+142 pp. | DOI | MR | Zbl
[7] E. Eberlein, M. S. Taqqu (eds.), Dependence in probability and statistics. A survey of recent results (Oberwolfach, 1985), Progr. Probab. Statist., 11, Birkhäuser Boston, Inc., Boston, MA, 1986, xii+473 pp. | DOI | MR | Zbl
[8] M. Falk, “Relative efficiency and defficiency of kernel type estimators of smooth distribution functions”, Statist. Neerlandica, 37:2 (1983), 73–83 | DOI | MR | Zbl
[9] M. Falk, R.-D. Reiss, “Weak convergence of smoothed and nonsmoothed bootstrap quantile estimates”, Ann. Probab., 17:1 (1989), 362–371 | DOI | MR | Zbl
[10] L. T. Fernholz, “Almost sure convergence of smoothed empirical distribution functions”, Scand. J. Statist., 18:3 (1991), 255–262 | MR | Zbl
[11] J. Kiefer, “On Bahadur's representation of sample quantiles”, Ann. Math. Statist., 38:5 (1967), 1323–1342 | DOI | MR | Zbl
[12] J. Kiefer, “Deviations between the sample quantile process and the sample $\mathrm{df}$”, Nonparametric techniques in statistical inference (Indiana Univ., Bloomington, IN, 1969), Cambridge Univ. Press, London, 1970, 299–319 | MR | Zbl
[13] Cheun-Der Lea, M. L. Puri, “Asymptotic properties of perturbed empirical distribution functions evaluated at a random point”, J. Statist. Plann. Inference, 19:2 (1988), 201–215 | DOI | MR | Zbl
[14] E. A. Nadaraya, “Some new estimates for distribution function”, Theory Probab. Appl., 9:3 (1964), 497–500 | DOI | MR | Zbl
[15] M. L. Puri, S. S. Ralescu, “Central limit theorem for perturbed empirical distribution functions evaluated at a random point”, J. Multivariate Anal., 19:2 (1986), 273–279 | DOI | MR | Zbl
[16] S. S. Ralescu, “Asymptotic deviation between perturbed empirical and quantile processes”, J. Statist. Plann. Inference, 32:2 (1992), 243–258 | DOI | MR | Zbl
[17] S. S. Ralescu, M. L. Puri, “Weak convergence of sequences of first passage processes and applications”, Stochastic Process. Appl., 62:2 (1996), 327–345 | DOI | MR | Zbl
[18] S. S. Ralescu, Shan Sun, “Necessary and sufficient conditions for the asymptotic normality of perturbed sample quantiles”, J. Statist. Plann. Inference, 35:1 (1993), 55–64 | DOI | MR | Zbl
[19] R.-D. Reiss, “Nonparametric estimation of smooth distribution functions”, Scand. J. Statist., 8:2 (1981), 116–119 | MR | Zbl
[20] M. Rosenblatt, “A central limit theorem and a strong mixing condition”, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 43–47 | DOI | MR | Zbl
[21] G. R. Shorack, J. A. Wellner, Empirical processes with applications to statistics, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1986, xxxviii+938 pp. | MR | Zbl
[22] Shan Sun, “Asymptotic behavior of the perturbed empirical distribution function evaluated at a random point for absolutely regular sequences”, J. Multivariate Anal., 47:2 (1993), 230–249 | DOI | MR | Zbl
[23] Shan Sun, “Central limit theorem of the perturbed sample quantile for a sequence of $m$-dependent nonstationary random process”, Teoriya veroyatn. i ee primen., 40:1 (1995), 143–158 | MR | Zbl
[24] Shan Sun, “Perturbed empirical distribution functions and quantiles under dependence”, J. Theoret. Probab., 8:4 (1995), 763–777 | DOI | MR | Zbl
[25] Shan Sun, M. C. A. van Zuijlen, “Limiting behavior of the perturbed empirical distribution functions evaluated at a random point under dependence”, Math. Methods Statist., 3:2 (1994), 149–162 | MR | Zbl
[26] B. B. Winter, “Convergence rate of perturbed empirical distribution functions”, J. Appl. Probab., 16:1 (1979), 163–173 | DOI | MR | Zbl
[27] H. Yamato, “Uniform convergence of an estimator of a distribution function”, Bull. Math. Statist., 15:3-4 (1973), 69–78 | DOI | MR | Zbl
[28] J. E. Yukich, “A note on limit theorems for perturbed empirical processes”, Stochastic Process. Appl., 33:1 (1989), 163–173 | DOI | MR | Zbl