A~maximal theorem of Hardy--Littlewood type for pairwise i.i.d.\ random variables and the law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 552-564

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p\in [1,2)$. We show that if $(X_n)_{n=1}^\infty$ is a sequence of pairwise i.i.d. random variables with $\mathbf{E}|X_1|^p\infty$, then $\mathbf{P}\{\sup_n|{S_n}/{n^{1/p}}|> \alpha\}\le {C_p\,\mathbf{E}|X_1|^p}/{\alpha^p}$ for every $\alpha>0$ for some constant $C_p$ depending only on $p$, where $S_n:=\sum_{i=1}^n(X_i-\mathbf{E}X_i)$. This will be proved as a consequence of a more general result where, instead of being pairwise i.i.d., the sequence $(X_n)$ is only required to be weakly correlated in the sense of E. Rio. In fact, we prove an inequality that gives the rates of the convergence $\lim_{n\to\infty}|S_n|/{n^{{1}/{p}}}=0$ a.s. and thus strengthen the main result of [E. Rio, C. R. Acad.Sci. Paris Sér. I Math., 320 (1995), pp. 469–474].
Keywords: pairwise i.i.d., the law of large numbers, Hardy–Littlewood maximal theorem.
@article{TVP_2021_66_3_a7,
     author = {T. Nguyen and H. Pham},
     title = {A~maximal theorem of {Hardy--Littlewood} type for pairwise i.i.d.\ random variables and the law of large numbers},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {552--564},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a7/}
}
TY  - JOUR
AU  - T. Nguyen
AU  - H. Pham
TI  - A~maximal theorem of Hardy--Littlewood type for pairwise i.i.d.\ random variables and the law of large numbers
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 552
EP  - 564
VL  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a7/
LA  - ru
ID  - TVP_2021_66_3_a7
ER  - 
%0 Journal Article
%A T. Nguyen
%A H. Pham
%T A~maximal theorem of Hardy--Littlewood type for pairwise i.i.d.\ random variables and the law of large numbers
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 552-564
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a7/
%G ru
%F TVP_2021_66_3_a7
T. Nguyen; H. Pham. A~maximal theorem of Hardy--Littlewood type for pairwise i.i.d.\ random variables and the law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 552-564. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a7/