A~maximal theorem of Hardy--Littlewood type for pairwise i.i.d.\ random variables and the law of large numbers
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 552-564
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $p\in [1,2)$. We show that if $(X_n)_{n=1}^\infty$ is a sequence of
pairwise i.i.d. random variables with $\mathbf{E}|X_1|^p\infty$, then
$\mathbf{P}\{\sup_n|{S_n}/{n^{1/p}}|> \alpha\}\le
{C_p\,\mathbf{E}|X_1|^p}/{\alpha^p}$ for every $\alpha>0$ for some constant
$C_p$ depending only on $p$, where $S_n:=\sum_{i=1}^n(X_i-\mathbf{E}X_i)$.
This will be proved as a consequence of a more general result where, instead
of being pairwise i.i.d., the sequence $(X_n)$ is only required to be weakly
correlated in the sense of E. Rio. In fact, we prove an inequality that
gives the rates of the convergence $\lim_{n\to\infty}|S_n|/{n^{{1}/{p}}}=0$
a.s. and thus strengthen the main result of [E. Rio, C. R. Acad.Sci. Paris Sér. I Math., 320 (1995), pp. 469–474].
Keywords:
pairwise i.i.d., the law of large numbers, Hardy–Littlewood maximal theorem.
@article{TVP_2021_66_3_a7,
author = {T. Nguyen and H. Pham},
title = {A~maximal theorem of {Hardy--Littlewood} type for pairwise i.i.d.\ random variables and the law of large numbers},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {552--564},
publisher = {mathdoc},
volume = {66},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a7/}
}
TY - JOUR AU - T. Nguyen AU - H. Pham TI - A~maximal theorem of Hardy--Littlewood type for pairwise i.i.d.\ random variables and the law of large numbers JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 552 EP - 564 VL - 66 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a7/ LA - ru ID - TVP_2021_66_3_a7 ER -
%0 Journal Article %A T. Nguyen %A H. Pham %T A~maximal theorem of Hardy--Littlewood type for pairwise i.i.d.\ random variables and the law of large numbers %J Teoriâ veroâtnostej i ee primeneniâ %D 2021 %P 552-564 %V 66 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a7/ %G ru %F TVP_2021_66_3_a7
T. Nguyen; H. Pham. A~maximal theorem of Hardy--Littlewood type for pairwise i.i.d.\ random variables and the law of large numbers. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 552-564. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a7/