Matching the distributions of the marginals and the sums for the Meixner class
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 534-551 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a given set of independent random variables (r.v.'s) $X_1,\dots,X_d$ belonging to a given Meixner class, we seek r.v.'s $Y_1,\dots,Y_d$ such that the marginal laws and the laws of the sums match: $Y_i\stackrel{d}{=} X_i$ and $\sum_iY_i\stackrel{d}{=}\sum_iX_i$. We give a full characterization of the r.v.'s $Y_1,\dots,Y_d$ and propose extensions and practical constructions by means of finite mean square expansions.
Keywords: Meixner class, mean square expansion, generating function
Mots-clés : copula.
@article{TVP_2021_66_3_a6,
     author = {R. Griffiths and K. Hamza},
     title = {Matching the distributions of the marginals and the sums for the {Meixner} class},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {534--551},
     year = {2021},
     volume = {66},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a6/}
}
TY  - JOUR
AU  - R. Griffiths
AU  - K. Hamza
TI  - Matching the distributions of the marginals and the sums for the Meixner class
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 534
EP  - 551
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a6/
LA  - en
ID  - TVP_2021_66_3_a6
ER  - 
%0 Journal Article
%A R. Griffiths
%A K. Hamza
%T Matching the distributions of the marginals and the sums for the Meixner class
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 534-551
%V 66
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a6/
%G en
%F TVP_2021_66_3_a6
R. Griffiths; K. Hamza. Matching the distributions of the marginals and the sums for the Meixner class. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 534-551. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a6/

[1] G. K. Eagleson, “Polynomial expansions of bivariate distributions”, Ann. Math. Statist., 35:3 (1964), 1208–1215 | DOI | MR | Zbl

[2] R. Griffiths, K. Hamza, “A universal approach to matching marginals and sums”, Electron. Commun. Probab., 25 (2020), 78, 12 pp. | DOI | MR | Zbl

[3] H. O. Lancaster, “The structure of bivariate distributions”, Ann. Math. Statist., 29:3 (1958), 719–736 | DOI | MR | Zbl

[4] H. O. Lancaster, “Correlations and canonical forms of bivariate distributions”, Ann. Math. Statist., 34:2 (1963), 532–538 | DOI | MR | Zbl

[5] H. O. Lancaster, “Joint probability distributions in the Meixner classes”, J. Roy. Statist. Soc. Ser. B, 37:3 (1975), 434–443 | DOI | MR | Zbl

[6] E. Lukacs, Characteristic functions, 2nd ed., rev. and enl., Charles Griffin Co., Ltd., London, 1970, x+350 pp. | MR | MR | Zbl | Zbl

[7] J. Meixner, “Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion”, J. London Math. Soc., 9:1 (1934), 6–13 | DOI | MR | Zbl

[8] D. A. Raikov, “O razlozhenii zakonov Gaussa i Puassona”, Izv. AN SSSR. Ser. matem., 2:1 (1938), 91–124 | Zbl

[9] C. Runge, “Über eine besondere Art von Integralgleichungen”, Math. Ann., 75:1 (1914), 130–132 | DOI | MR | Zbl

[10] W. Schoutens, Stochastic processes and orthogonal polynomials, Lect. Notes Stat., 146, Springer-Verlag, New York, 2000, xiv+163 pp. | DOI | MR | Zbl

[11] J. M. Stoyanov, Counterexamples in probability, 3rd rev. ed., Dover Publications, Inc., Mineola, NY, 2013, xxx+368 pp. | MR | Zbl | Zbl