An exponential inequality for $U$-statistics of i.i.d.\ data
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 508-533

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an exponential inequality for degenerated $U$-statistics of order $r$ of independent and identically distributed (i.i.d.) data. This inequality gives a control of the tail of the maxima absolute values of the $U$-statistic by the sum of the two terms: an exponential term and one involving the tail of $h(X_1,\dots,X_r)$. We also give a version for not necessarily degenerated $U$-statistics having a symmetric kernel and furnish an application to the convergence rates in the Marcinkiewicz law of large numbers. Application to the invariance principle in Hölder spaces is also considered.
Keywords: $U$-statistics, exponential inequality.
@article{TVP_2021_66_3_a5,
     author = {D. Giraudo},
     title = {An exponential inequality for $U$-statistics of i.i.d.\ data},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {508--533},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a5/}
}
TY  - JOUR
AU  - D. Giraudo
TI  - An exponential inequality for $U$-statistics of i.i.d.\ data
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 508
EP  - 533
VL  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a5/
LA  - ru
ID  - TVP_2021_66_3_a5
ER  - 
%0 Journal Article
%A D. Giraudo
%T An exponential inequality for $U$-statistics of i.i.d.\ data
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 508-533
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a5/
%G ru
%F TVP_2021_66_3_a5
D. Giraudo. An exponential inequality for $U$-statistics of i.i.d.\ data. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 508-533. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a5/