@article{TVP_2021_66_3_a5,
author = {D. Giraudo},
title = {An exponential inequality for $U$-statistics of i.i.d. data},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {508--533},
year = {2021},
volume = {66},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a5/}
}
D. Giraudo. An exponential inequality for $U$-statistics of i.i.d. data. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 508-533. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a5/
[1] M. A. Arcones, “A Bernstein-type inequality for U-statistics and U-processes”, Statist. Probab. Lett., 22:3 (1995), 239–247 | DOI | MR | Zbl
[2] M. A. Arcones, E. Giné, “Limit theorems for $U$-processes”, Ann. Probab., 21:3 (1993), 1494–1542 | DOI | MR | Zbl
[3] L. E. Baum, M. Katz, “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl
[4] T. C. Christofides, “Probability inequalities with exponential bounds for $U$-statistics”, Statist. Probab. Lett., 12:3 (1991), 257–261 | DOI | MR | Zbl
[5] J. Dedecker, F. Merlevède, “A deviation bound for $\alpha$-dependent sequences with applications to intermittent maps”, Stoch. Dyn., 17:1 (2017), 1750005, 27 pp. | DOI | MR | Zbl
[6] Xiequan Fan, I. Grama, Quansheng Liu, “Large deviation exponential inequalities for supermartingales”, Electron. Commun. Probab., 17 (2012), 59, 8 pp. | DOI | MR | Zbl
[7] Xiequan Fan, I. Grama, Quansheng Liu, “Exponential inequalities for martingales with applications”, Electron. J. Probab., 20 (2015), 1, 22 pp. | DOI | MR | Zbl
[8] E. Giné, R. Latała, J. Zinn, “Exponential and moment inequalities for $U$-statistics”, High dimensional probability (Seattle, WA, 1999), v. 2, Progr. Probab., 47, Birkhäuser Boston, Boston, MA, 2000, 13–38 | DOI | MR | Zbl
[9] E. Giné, J. Zinn, “Marcinkiewicz type laws of large numbers and convergence of moments for $U$-statistics”, Probability in Banach spaces (Brunswick, ME, 1991), v. 8, Progr. Probab., 30, Birkhäuser Boston, Boston, MA, 1992, 273–291 | DOI | MR | Zbl
[10] D. Giraudo, “Holderian weak invariance principle under a Hannan type condition”, Stochastic Process. Appl., 126:1 (2016), 290–311 | DOI | MR | Zbl
[11] D. Giraudo, “Holderian weak invariance principle for stationary mixing sequences”, J. Theoret. Probab., 30:1 (2017), 196–211 | DOI | MR | Zbl
[12] W. Hoeffding, “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 58:301 (1963), 13–30 | DOI | MR | Zbl
[13] Ch. Houdré, P. Reynaud-Bouret, “Exponential inequalities, with constants, for $U$-statistics of order two”, Stochastic inequalities and applications, Progr. Probab., 56, Birkhäuser, Basel, 2003, 55–69 | DOI | MR | Zbl
[14] P. N. Kokic, “Rates of convergence in the strong law of large numbers for degenerate $U$-statistics”, Statist. Probab. Lett., 5:5 (1987), 371–374 | DOI | MR | Zbl
[15] E. Lesigne, D. Volný, “Large deviations for martingales”, Stochastic Process. Appl., 96:1 (2001), 143–159 | DOI | MR | Zbl
[16] Kuang Hsien Lin, “Convergence rate and the first exit time for $U$-statistics”, Bull. Inst. Math. Acad. Sinica, 9:1 (1981), 129–143 | MR | Zbl
[17] P. Major, “On a multivariate version of Bernstein's inequality”, Electron. J. Probab., 12 (2007), 966–988 | DOI | MR | Zbl
[18] P. Major, “Estimation of multiple random integrals and $U$-statistics”, Mosc. Math. J., 10:4 (2010), 747–763 | DOI | MR | Zbl
[19] A. Mandelbaum, M. S. Taqqu, “Invariance principle for symmetric statistics”, Ann. Statist., 12:2 (1984), 483–496 | DOI | MR | Zbl
[20] F. Merlevède, M. Peligrad, S. Utev, “Recent advances in invariance principles for stationary sequences”, Probab. Surv., 3 (2006), 1–36 | DOI | MR | Zbl
[21] A. Račkauskas, Ch. Suquet, “Necessary and sufficient condition for the Lamperti invariance principle”, Teoriya Imovir. ta Matem. Statist., 68 (2003), 115–124 ; Theory Probab. Math. Statist., 68 (2004), 127–137 | MR | Zbl
[22] A. Račkauskas, Ch. Suquet, “Necessary and sufficient condition for the functional central limit theorem in Hölder spaces”, J. Theoret. Probab., 17:1 (2004), 221–243 | DOI | MR | Zbl
[23] L. Rüschendorf, “Ordering of distributions and rearrangement of functions”, Ann. Probab., 9:2 (1981), 276–283 | DOI | MR | Zbl
[24] Ch. Suquet, “Tightness in Schauder decomposable Banach spaces”, Proceedings of the St. Petersburg Mathematical Society, v. 5, Amer. Math. Soc. Transl. Ser. 2, 193, Amer. Math. Soc., Providence, RI, 1999, 201–224 | DOI | MR | Zbl
[25] H. Teicher, “On the Marcinkiewicz–Zygmund strong law for $U$-statistics”, J. Theoret. Probab., 11:1 (1998), 279–288 | DOI | MR | Zbl
[26] Qiying Wang, “Bernstein type inequalities for degenerate $U$-statistics with applications”, Chinese Ann. Math. Ser. B, 19:2 (1998), 157–166 | MR | Zbl