Limit distributions of the number of vertices of a given degree in a configuration graph with bounded number of edges
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 468-486 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the model of an $N$-vertex configuration graph where the number of edges is at most $n$ and the degrees of vertices are independent and identically distributed (i.i.d.) random variables (r.v.'s). The distribution of the r.v. $\xi$, which is defined as the degree of any given vertex, is assumed to satisfy the condition $p_k=\mathbf{P}\{\xi=k\}\sim\frac{L}{k^g\ln^h k}$ as $k\to\infty$, where $L>0$, $g>1$, $h\ge0$. Limit theorems for the number of vertices of a given degree as $N, n\to\infty$ are proved.
Mots-clés : configuration graph, limit distribution.
Keywords: degree of a vertex
@article{TVP_2021_66_3_a3,
     author = {Yu. L. Pavlov and I. A. Cheplyukova},
     title = {Limit distributions of the number of vertices of a~given degree in a~configuration graph with bounded number of edges},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {468--486},
     year = {2021},
     volume = {66},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
AU  - I. A. Cheplyukova
TI  - Limit distributions of the number of vertices of a given degree in a configuration graph with bounded number of edges
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 468
EP  - 486
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/
LA  - ru
ID  - TVP_2021_66_3_a3
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%A I. A. Cheplyukova
%T Limit distributions of the number of vertices of a given degree in a configuration graph with bounded number of edges
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 468-486
%V 66
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/
%G ru
%F TVP_2021_66_3_a3
Yu. L. Pavlov; I. A. Cheplyukova. Limit distributions of the number of vertices of a given degree in a configuration graph with bounded number of edges. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 468-486. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/

[1] B. Bollobas, “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, European J. Combin., 1:4 (1980), 311–316 | DOI | MR | Zbl

[2] M. Faloutsos, P. Faloutsos, Ch. Faloutsos, “On power-law relationships of the internet topology”, ACM SIGCOMM Comput. Commun. Rev., 29:4 (1999), 251–262 | DOI

[3] R. Durrett, Random graph dynamics, Camb. Ser. Stat. Probab. Math., Cambridge Univ. Press, Cambridge, 2007, x+212 pp. | DOI | MR | Zbl

[4] H. Reittu, I. Norros, “On the power-law random graph model of massive data networks”, Performance Evaluation, 55:1-2 (2004), 3–23 | DOI

[5] Yu. L. Pavlov, I. A. Cheplyukova, “Random graphs of Internet type and the generalised allocation scheme”, Discrete Math. Appl., 18:5 (2008), 447–463 | DOI | DOI | MR | Zbl

[6] Yu. L. Pavlov, “On conditional Internet graphs whose vertex degrees have no mathematical expectation”, Discrete Math. Appl., 20:5-6 (2010), 509–524 | DOI | DOI | MR | Zbl

[7] Yu. L. Pavlov, E. V. Khvorostyanskaya, “On the limit distributions of the degrees of vertices in configuration graphs with a bounded number of edges”, Sb. Math., 207:3 (2016), 400–417 | DOI | DOI | MR | Zbl

[8] G. Bianconi, A.-L. Barabási, “Bose–Einstein condensation in complex networks”, Phys. Rev. Lett., 86:24 (2001), 5632–5635 | DOI

[9] Yu. L. Pavlov, “Ob uslovnykh konfiguratsionnykh grafakh so sluchainymi raspredeleniyami stepenei vershin”, Tr. Kar. NTs RAN, 2016, no. 8, 62–72 | DOI

[10] Yu. L. Pavlov, “Conditional configuration graphs with discrete power-law distribution of vertex degrees”, Sb. Math., 209:2 (2018), 258–275 | DOI | DOI | MR | Zbl

[11] A. N. Chuprunov, I. Fazekas, “An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a given number of particles”, Discrete Math. Appl., 22:1 (2012), 101–122 | DOI | DOI | MR | Zbl

[12] V. F. Kolchin, Random graphs, Encyclopedia Math. Appl., 53, Cambridge Univ. Press, Cambridge, 1999, xii+252 pp. | DOI | MR | MR | Zbl | Zbl

[13] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl

[14] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl

[15] E. Lukacs, Characteristic functions, Griffin's Statistical Monographs Courses, 5, Charles Griffin and Co., London, 1970, x+350 pp. | MR | Zbl | Zbl