Limit distributions of the number of vertices of a~given degree in a~configuration graph with bounded number of edges
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 468-486
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the model of an $N$-vertex configuration graph where the number
of edges is at most $n$ and the degrees of vertices are independent and
identically distributed (i.i.d.) random variables (r.v.'s). The distribution
of the r.v. $\xi$, which is defined as the degree of any given vertex, is
assumed to satisfy the condition
$p_k=\mathbf{P}\{\xi=k\}\sim\frac{L}{k^g\ln^h k}$ as $k\to\infty$, where
$L>0$, $g>1$, $h\ge0$. Limit theorems for the number of vertices of a given
degree as $N, n\to\infty$ are proved.
Mots-clés :
configuration graph, limit distribution.
Keywords: degree of a vertex
Keywords: degree of a vertex
@article{TVP_2021_66_3_a3,
author = {Yu. L. Pavlov and I. A. Cheplyukova},
title = {Limit distributions of the number of vertices of a~given degree in a~configuration graph with bounded number of edges},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {468--486},
publisher = {mathdoc},
volume = {66},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/}
}
TY - JOUR AU - Yu. L. Pavlov AU - I. A. Cheplyukova TI - Limit distributions of the number of vertices of a~given degree in a~configuration graph with bounded number of edges JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 468 EP - 486 VL - 66 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/ LA - ru ID - TVP_2021_66_3_a3 ER -
%0 Journal Article %A Yu. L. Pavlov %A I. A. Cheplyukova %T Limit distributions of the number of vertices of a~given degree in a~configuration graph with bounded number of edges %J Teoriâ veroâtnostej i ee primeneniâ %D 2021 %P 468-486 %V 66 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/ %G ru %F TVP_2021_66_3_a3
Yu. L. Pavlov; I. A. Cheplyukova. Limit distributions of the number of vertices of a~given degree in a~configuration graph with bounded number of edges. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 468-486. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/