Keywords: degree of a vertex
@article{TVP_2021_66_3_a3,
author = {Yu. L. Pavlov and I. A. Cheplyukova},
title = {Limit distributions of the number of vertices of a~given degree in a~configuration graph with bounded number of edges},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {468--486},
year = {2021},
volume = {66},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/}
}
TY - JOUR AU - Yu. L. Pavlov AU - I. A. Cheplyukova TI - Limit distributions of the number of vertices of a given degree in a configuration graph with bounded number of edges JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 468 EP - 486 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/ LA - ru ID - TVP_2021_66_3_a3 ER -
%0 Journal Article %A Yu. L. Pavlov %A I. A. Cheplyukova %T Limit distributions of the number of vertices of a given degree in a configuration graph with bounded number of edges %J Teoriâ veroâtnostej i ee primeneniâ %D 2021 %P 468-486 %V 66 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/ %G ru %F TVP_2021_66_3_a3
Yu. L. Pavlov; I. A. Cheplyukova. Limit distributions of the number of vertices of a given degree in a configuration graph with bounded number of edges. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 468-486. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a3/
[1] B. Bollobas, “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, European J. Combin., 1:4 (1980), 311–316 | DOI | MR | Zbl
[2] M. Faloutsos, P. Faloutsos, Ch. Faloutsos, “On power-law relationships of the internet topology”, ACM SIGCOMM Comput. Commun. Rev., 29:4 (1999), 251–262 | DOI
[3] R. Durrett, Random graph dynamics, Camb. Ser. Stat. Probab. Math., Cambridge Univ. Press, Cambridge, 2007, x+212 pp. | DOI | MR | Zbl
[4] H. Reittu, I. Norros, “On the power-law random graph model of massive data networks”, Performance Evaluation, 55:1-2 (2004), 3–23 | DOI
[5] Yu. L. Pavlov, I. A. Cheplyukova, “Random graphs of Internet type and the generalised allocation scheme”, Discrete Math. Appl., 18:5 (2008), 447–463 | DOI | DOI | MR | Zbl
[6] Yu. L. Pavlov, “On conditional Internet graphs whose vertex degrees have no mathematical expectation”, Discrete Math. Appl., 20:5-6 (2010), 509–524 | DOI | DOI | MR | Zbl
[7] Yu. L. Pavlov, E. V. Khvorostyanskaya, “On the limit distributions of the degrees of vertices in configuration graphs with a bounded number of edges”, Sb. Math., 207:3 (2016), 400–417 | DOI | DOI | MR | Zbl
[8] G. Bianconi, A.-L. Barabási, “Bose–Einstein condensation in complex networks”, Phys. Rev. Lett., 86:24 (2001), 5632–5635 | DOI
[9] Yu. L. Pavlov, “Ob uslovnykh konfiguratsionnykh grafakh so sluchainymi raspredeleniyami stepenei vershin”, Tr. Kar. NTs RAN, 2016, no. 8, 62–72 | DOI
[10] Yu. L. Pavlov, “Conditional configuration graphs with discrete power-law distribution of vertex degrees”, Sb. Math., 209:2 (2018), 258–275 | DOI | DOI | MR | Zbl
[11] A. N. Chuprunov, I. Fazekas, “An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a given number of particles”, Discrete Math. Appl., 22:1 (2012), 101–122 | DOI | DOI | MR | Zbl
[12] V. F. Kolchin, Random graphs, Encyclopedia Math. Appl., 53, Cambridge Univ. Press, Cambridge, 1999, xii+252 pp. | DOI | MR | MR | Zbl | Zbl
[13] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl
[14] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl
[15] E. Lukacs, Characteristic functions, Griffin's Statistical Monographs Courses, 5, Charles Griffin and Co., London, 1970, x+350 pp. | MR | Zbl | Zbl