An alternative method of the proof of the ergodic theorem for general Markov chains
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 454-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As an alternative to the splitting technique of Athreya–Ney and Nummelin, we propose a new method for the proof of ergodic theorems for Markov chains with arbitrary state space. Under our approach, the expansion of the original state space, which, in our opinion, is an ingenious but still artificial technique, can be avoided.
Keywords: splitting method, transition function, Harris condition, state space, ergodic theorem, kernel of an operator.
Mots-clés : Markov chains
@article{TVP_2021_66_3_a2,
     author = {S. V. Nagaev},
     title = {An alternative method of the proof of the ergodic theorem for general {Markov} chains},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {454--467},
     year = {2021},
     volume = {66},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a2/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - An alternative method of the proof of the ergodic theorem for general Markov chains
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 454
EP  - 467
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a2/
LA  - ru
ID  - TVP_2021_66_3_a2
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T An alternative method of the proof of the ergodic theorem for general Markov chains
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 454-467
%V 66
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a2/
%G ru
%F TVP_2021_66_3_a2
S. V. Nagaev. An alternative method of the proof of the ergodic theorem for general Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 454-467. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a2/

[1] K. B. Athreya, P. Ney, “A new approach to the limit theory of recurrent Markov chains”, Trans. Amer. Math. Soc., 245 (1978), 493–501 | DOI | MR | Zbl

[2] S. V. Nagaev, “Some questions on the theory of homogeneous Markov process with discrete time”, Soviet Math. Dokl., 2 (1961), 867–869 | MR | Zbl

[3] S. V. Nagaev, “Ergodicheskie teoremy dlya markovskikh protsessov s diskretnym vremenem”, Sib. matem. zhurn., 6:2 (1965), 413–432 | MR | Zbl

[4] E. Nummelin, “A splitting technique for Harris recurrent Markov chains”, Z. Wahrsch. Verw. Gebiete, 43:4 (1978), 309–318 | DOI | MR | Zbl

[5] T. E. Harris, “The existence of stationary measures for certain Markov processes”, Proceedings of the Third Berkeley symposium on mathematical statistics and probability (1954–1955), v. 2, Univ. of California Press, Berkeley–Los Angeles, 1956, 113–124 | MR | Zbl

[6] S. Orey, “Recurrent Markov chains”, Pacific J. Math., 9:3 (1959), 805–827 | DOI | MR | Zbl

[7] S. Orey, Lecture notes on limit theorems for Markov chain transition probabilities, Van Nostrand Reinhold Math. Stud., 34, Van Nostrand Reinhold Co., London–New York–Toronto, ON, 1971, viii+108 pp. | MR | Zbl

[8] E. Nummelin, General irreducible Markov chains and non-negative operators, Cambridge Tracts in Math., 83, Cambridge Univ. Press, Cambridge, 1984, xi+156 pp. | DOI | MR | MR | Zbl

[9] S. V. Nagaev, “On an ergodic theorem for homogeneous Markov chains”, Soviet Math. Dokl., 25:2 (1982), 281–284 | MR | Zbl

[10] S. V. Nagaev, “Ergodic theorems for homogeneous Markov chains”, Soviet Math. Dokl., 39:3 (1989), 483–486 | MR | Zbl