Mots-clés : Bernoulli sum, binomial distribution
@article{TVP_2021_66_3_a11,
author = {M. Kova\v{c}evi\'c},
title = {On the maximum entropy of a~sum of independent discrete random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {601--609},
year = {2021},
volume = {66},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a11/}
}
M. Kovačević. On the maximum entropy of a sum of independent discrete random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 601-609. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a11/
[1] P. Harremoës, “Binomial and Poisson distributions as maximum entropy distributions”, IEEE Trans. Inform. Theory, 47:5 (2001), 2039–2041 | DOI | MR | Zbl
[2] E. Hillion, O. Johnson, “Discrete versions of the transport equation and the Shepp–Olkin conjecture”, Ann. Probab., 44:1 (2016), 276–306 | DOI | MR | Zbl
[3] E. Hillion, O. Johnson, “A proof of the Shepp–Olkin entropy concavity conjecture”, Bernoulli, 23:4B (2017), 3638–3649 | DOI | MR | Zbl
[4] E. Hillion, O. Johnson, “A proof of the Shepp–Olkin entropy monotonicity conjecture”, Electron. J. Probab., 24 (2019), 126, 14 pp. | DOI | MR | Zbl
[5] O. Johnson, “Log-concavity and the maximum entropy property of the Poisson distribution”, Stochastic Process. Appl., 117:6 (2007), 791–802 | DOI | MR | Zbl
[6] J. N. Kapur, Maximum-entropy models in science and engineering, John Wiley Sons, Inc., New York, 1989, xii+635 pp. | MR | Zbl
[7] P. Mateev, “On the entropy of the multinomial distribution”, Theory Probab. Appl., 23:1 (1978), 188–190 | DOI | MR | Zbl
[8] E. Ordentlich, “Maximizing the entropy of a sum of independent bounded random variables”, IEEE Trans. Inform. Theory, 52:5 (2006), 2176–2181 | DOI | MR | Zbl
[9] L. A. Shepp, I. Olkin, Entropy of the sum of independent Bernoulli random variables and of the multinomial distribution, Tech. Report 131, Stanford Univ., Stanford, CA, 1978, 10 pp. ; Contributions to probability, Academic Press, New York, 1981, 201–206 https://statistics.stanford.edu/research/entropy-sum-independent-bernoulli-random-variables-and-multinomial-distribution | MR | Zbl
[10] Yaming Yu, “Maximum entropy for sums of symmetric and bounded random variables: a short derivation”, IEEE Trans. Inform. Theory, 54:4 (2008), 1818–1819 | DOI | MR | Zbl
[11] Yaming Yu, “On the maximum entropy properties of the binomial distribution”, IEEE Trans. Inform. Theory, 54:7 (2008), 3351–3353 | DOI | MR | Zbl