On the maximum entropy of a~sum of independent discrete random variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 601-609
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1, \dots, X_n$ be independent random variables taking values
in the alphabet $\{0, 1, \dots, r\}$, and let $S_n=\sum_{i=1}^n X_i$.
The Shepp–Olkin theorem states that in the binary case (${r=1}$),
the Shannon entropy of $S_n$ is maximized when all the $X_i$'s are
uniformly distributed, i.e., Bernoulli(1/2).
In an attempt to generalize this theorem to arbitrary finite alphabets,
we obtain a lower bound on the maximum entropy of $S_n$ and prove
that it is tight in several special cases.
In addition to these special cases, an argument is presented supporting
the conjecture that the bound represents the optimal value for all $n$, $r$,
i.e., that $H(S_n)$ is maximized when $X_1, \dots, X_{n-1}$ are
uniformly distributed over $\{0, r\}$, while the probability mass
function of $X_n$ is a mixture (with explicitly defined nonzero weights)
of the uniform distributions over $\{0, r\}$ and $\{1, \dots, r-1\}$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
maximum entropy, Shepp–Olkin theorem, ultra-log-concavity.
Mots-clés : Bernoulli sum, binomial distribution
                    
                  
                
                
                Mots-clés : Bernoulli sum, binomial distribution
@article{TVP_2021_66_3_a11,
     author = {M. Kova\v{c}evi\'c},
     title = {On the maximum entropy of a~sum of independent discrete random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {601--609},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a11/}
}
                      
                      
                    M. Kovačević. On the maximum entropy of a~sum of independent discrete random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 601-609. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a11/
