On the maximum entropy of a~sum of independent discrete random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 601-609

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_1, \dots, X_n$ be independent random variables taking values in the alphabet $\{0, 1, \dots, r\}$, and let $S_n=\sum_{i=1}^n X_i$. The Shepp–Olkin theorem states that in the binary case (${r=1}$), the Shannon entropy of $S_n$ is maximized when all the $X_i$'s are uniformly distributed, i.e., Bernoulli(1/2). In an attempt to generalize this theorem to arbitrary finite alphabets, we obtain a lower bound on the maximum entropy of $S_n$ and prove that it is tight in several special cases. In addition to these special cases, an argument is presented supporting the conjecture that the bound represents the optimal value for all $n$, $r$, i.e., that $H(S_n)$ is maximized when $X_1, \dots, X_{n-1}$ are uniformly distributed over $\{0, r\}$, while the probability mass function of $X_n$ is a mixture (with explicitly defined nonzero weights) of the uniform distributions over $\{0, r\}$ and $\{1, \dots, r-1\}$.
Keywords: maximum entropy, Shepp–Olkin theorem, ultra-log-concavity.
Mots-clés : Bernoulli sum, binomial distribution
@article{TVP_2021_66_3_a11,
     author = {M. Kova\v{c}evi\'c},
     title = {On the maximum entropy of a~sum of independent discrete random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {601--609},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a11/}
}
TY  - JOUR
AU  - M. Kovačević
TI  - On the maximum entropy of a~sum of independent discrete random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 601
EP  - 609
VL  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a11/
LA  - ru
ID  - TVP_2021_66_3_a11
ER  - 
%0 Journal Article
%A M. Kovačević
%T On the maximum entropy of a~sum of independent discrete random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 601-609
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a11/
%G ru
%F TVP_2021_66_3_a11
M. Kovačević. On the maximum entropy of a~sum of independent discrete random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 601-609. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a11/