@article{TVP_2021_66_3_a0,
author = {N. A. Karagodin and M. A. Lifshits},
title = {On the distribution of the last exit time over a~slowly growing linear boundary for {a~Gaussian} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {419--432},
year = {2021},
volume = {66},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a0/}
}
TY - JOUR AU - N. A. Karagodin AU - M. A. Lifshits TI - On the distribution of the last exit time over a slowly growing linear boundary for a Gaussian process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 419 EP - 432 VL - 66 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a0/ LA - ru ID - TVP_2021_66_3_a0 ER -
%0 Journal Article %A N. A. Karagodin %A M. A. Lifshits %T On the distribution of the last exit time over a slowly growing linear boundary for a Gaussian process %J Teoriâ veroâtnostej i ee primeneniâ %D 2021 %P 419-432 %V 66 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a0/ %G ru %F TVP_2021_66_3_a0
N. A. Karagodin; M. A. Lifshits. On the distribution of the last exit time over a slowly growing linear boundary for a Gaussian process. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 419-432. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a0/
[1] F. Aurzada, V. Betz, M. Lifshits, “Breaking a chain of interacting Brownian particles”, Ann. Appl. Probab. (to appear)
[2] F. Aurzada, F. Betts, M. Lifshits, “Razryv tsepochki vzaimodeistvuyuschikh brounovskikh chastits: gumbeleva predelnaya teorema”, Teoriya veroyatn. i ee primen., 66:2 (2021), 231–260 | DOI
[3] F. Aurzada, V. Betz, M. Lifshits, “Universal break law for a class of models of polymer rupture”, J. Phys. A, 54:30 (2021), 305204, 28 pp. | DOI
[4] S. M. Berman, “Limit theorems for the maximum term in stationary sequences”, Ann. Math. Statist., 35:2 (1964), 502–516 | DOI | MR | Zbl
[5] K. Dȩbicki, Peng Liu, “The time of ultimate recovery in Gaussian risk model”, Extremes, 22:3 (2019), 499–521 ; arXiv: 1801.02469 | DOI | MR | Zbl
[6] J. Galambos, The asymptotic theory of extreme order statistics, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–Chichester–Brisbane, 1978, xiv+352 pp. | MR | MR | Zbl | Zbl
[7] J. Hüsler, Yueming Zhang, “On first and last ruin times of Gaussian processes”, Statist. Probab. Lett., 78:10 (2008), 1230–1235 | DOI | MR | Zbl
[8] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995, xii+333 pp. | DOI | MR | Zbl | Zbl
[9] Ch. Paroissin, L. Rabehasaina, “First and last passage times of spectrally positive Lévy processes with application to reliability”, Methodol. Comput. Appl. Probab., 17:2 (2015), 351–372 | DOI | MR | Zbl
[10] J. Pickands III, “Asymptotic properties of the maximum in a stationary Gaussian process”, Trans. Amer. Math. Soc., 145 (1969), 75–86 | DOI | MR | Zbl
[11] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press, London, 2015, xi+167 pp. | Zbl