On the distribution of the last exit time over a slowly growing linear boundary for a Gaussian process
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 419-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a class of Gaussian stationary processes, we prove a limit theorem on the convergence of the distributions of the scaled last exit time over a slowly growing linear boundary. The limit is a double exponential (Gumbel) distribution.
Keywords: last exit time, Gaussian process, limit theorem, double exponential law.
@article{TVP_2021_66_3_a0,
     author = {N. A. Karagodin and M. A. Lifshits},
     title = {On the distribution of the last exit time over a~slowly growing linear boundary for {a~Gaussian} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {419--432},
     year = {2021},
     volume = {66},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a0/}
}
TY  - JOUR
AU  - N. A. Karagodin
AU  - M. A. Lifshits
TI  - On the distribution of the last exit time over a slowly growing linear boundary for a Gaussian process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 419
EP  - 432
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a0/
LA  - ru
ID  - TVP_2021_66_3_a0
ER  - 
%0 Journal Article
%A N. A. Karagodin
%A M. A. Lifshits
%T On the distribution of the last exit time over a slowly growing linear boundary for a Gaussian process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 419-432
%V 66
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a0/
%G ru
%F TVP_2021_66_3_a0
N. A. Karagodin; M. A. Lifshits. On the distribution of the last exit time over a slowly growing linear boundary for a Gaussian process. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 3, pp. 419-432. http://geodesic.mathdoc.fr/item/TVP_2021_66_3_a0/

[1] F. Aurzada, V. Betz, M. Lifshits, “Breaking a chain of interacting Brownian particles”, Ann. Appl. Probab. (to appear)

[2] F. Aurzada, F. Betts, M. Lifshits, “Razryv tsepochki vzaimodeistvuyuschikh brounovskikh chastits: gumbeleva predelnaya teorema”, Teoriya veroyatn. i ee primen., 66:2 (2021), 231–260 | DOI

[3] F. Aurzada, V. Betz, M. Lifshits, “Universal break law for a class of models of polymer rupture”, J. Phys. A, 54:30 (2021), 305204, 28 pp. | DOI

[4] S. M. Berman, “Limit theorems for the maximum term in stationary sequences”, Ann. Math. Statist., 35:2 (1964), 502–516 | DOI | MR | Zbl

[5] K. Dȩbicki, Peng Liu, “The time of ultimate recovery in Gaussian risk model”, Extremes, 22:3 (2019), 499–521 ; arXiv: 1801.02469 | DOI | MR | Zbl

[6] J. Galambos, The asymptotic theory of extreme order statistics, Wiley Ser. Probab. Math. Statist., John Wiley Sons, New York–Chichester–Brisbane, 1978, xiv+352 pp. | MR | MR | Zbl | Zbl

[7] J. Hüsler, Yueming Zhang, “On first and last ruin times of Gaussian processes”, Statist. Probab. Lett., 78:10 (2008), 1230–1235 | DOI | MR | Zbl

[8] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995, xii+333 pp. | DOI | MR | Zbl | Zbl

[9] Ch. Paroissin, L. Rabehasaina, “First and last passage times of spectrally positive Lévy processes with application to reliability”, Methodol. Comput. Appl. Probab., 17:2 (2015), 351–372 | DOI | MR | Zbl

[10] J. Pickands III, “Asymptotic properties of the maximum in a stationary Gaussian process”, Trans. Amer. Math. Soc., 145 (1969), 75–86 | DOI | MR | Zbl

[11] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press, London, 2015, xi+167 pp. | Zbl