@article{TVP_2021_66_2_a9,
author = {M. L. Esqu{\'\i}vel and P. P. Mota and J. P. Pina},
title = {On a~stochastic model for a~cooperative banking scheme for microcredit},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {402--414},
year = {2021},
volume = {66},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a9/}
}
TY - JOUR AU - M. L. Esquível AU - P. P. Mota AU - J. P. Pina TI - On a stochastic model for a cooperative banking scheme for microcredit JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 402 EP - 414 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a9/ LA - ru ID - TVP_2021_66_2_a9 ER -
M. L. Esquível; P. P. Mota; J. P. Pina. On a stochastic model for a cooperative banking scheme for microcredit. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 2, pp. 402-414. http://geodesic.mathdoc.fr/item/TVP_2021_66_2_a9/
[1] Alternative banking and financial crisis, Banking, Money and International Finance, eds. K. von Mettenheim, O. Butzbach, Taylor Francis Ltd., London, 2015, 304 pp. | DOI
[2] F. Diener, M. Diener, O. Khodr, Ph. Protter, “Mathematical models for microlending”, Proceedings of the 16th mathematical conference of Bangladesh Mathematical Society (Dhaka, 2009), 2009, 1–6
[3] G. Dorfleitner, C. Priberny, “A quantitative model for structured microfinance”, Q. Rev. Econ. Finance, 53:1 (2013), 12–22 | DOI
[4] J. Grandell, Aspects of risk theory, Springer Ser. Statist. Probab. Appl., Springer-Verlag, New York, 1991, x+175 pp. | DOI | MR | Zbl
[5] S. Asmussen, H. Albrecher, Ruin probabilities, Adv. Ser. Stat. Sci. Appl. Probab., 14, 2nd ed., World Sci. Publ., Hackensack, NJ, 2010, xviii+602 pp. | DOI | MR | Zbl
[6] D. Landriault, Tianxiang Shi, “First passage time for compound Poisson processes with diffusion: ruin theoretical and financial applications”, Scand. Actuar. J., 2014:4 (2014), 368–382 | DOI | MR | Zbl
[7] A. Novikov, R. E. Melchers, E. Shinjikashvili, N. Kordzakhia, “First passage time of filtered Poisson process with exponential shape function”, Probabilistic Eng. Mech., 20:1 (2005), 57–65 | DOI
[8] Zhimin Zhang, Hu Yang, Shuanming Li, “The perturbed compound Poisson risk model with two-sided jumps”, J. Comput. Appl. Math., 233:8 (2010), 1773–1784 | DOI | MR | Zbl
[9] E. C. K. Cheung, “On a class of stochastic models with two-sided jumps”, Queueing Syst., 69:1 (2011), 28 | DOI | MR | Zbl
[10] H. U. Gerber, E. S. W. Shiu, “On the time value of ruin”, N. Am. Actuar. J., 2:1 (1998), 48–72 | DOI | MR | Zbl
[11] A. E. Kyprianou, Gerber–Shiu risk theory, EAA Ser., Springer, Cham, 2013, viii+93 pp. | DOI | MR | Zbl
[12] M. Vidmar, “Ruin under stochastic dependence between premium and claim arrivals”, Scand. Actuar. J., 2018:6 (2018), 505–513 | DOI | MR | Zbl
[13] J. J. Rebello, K. K. Thampi, “Some ruin theory components of two sided jump problems under renewal risk process”, Int. Math. Forum, 12:7 (2017), 311–325 | DOI
[14] Hua Dong, Zaiming Liu, “The ruin problem in a renewal risk model with two-sided jumps”, Math. Comput. Modelling, 57:3-4 (2013), 800–811 | DOI
[15] M. L. Esquível, “Probability generating functions for discrete real-valued random variables”, Teoriya veroyatn. i ee primen., 52:1 (2007), 129–149 ; Theory Probab. Appl., 52:1 (2008), 40–57 | DOI | MR | Zbl | DOI
[16] A. N. Shiryaev, Veroyatnost, Nauka, M., 1980, 576 pp. ; A. N. Shiryaev, Probability, Grad. Texts in Math., 95, 2nd ed., Springer-Verlag, New York, 1996, xvi+623 pp. | MR | Zbl | DOI | MR | Zbl
[17] C. Dellacherie, P.-A. Meyer, Probabilités et potentiel, Ch. V à VIII. Théorie des martingales, Actualités Sci. Indust., 1385, Publ. Inst. Math. Univ. Strasbourg, XVII, Rev. ed., Hermann, Paris, 1980, xviii+476 pp. | MR | Zbl
[18] R. Sh. Liptser, A. N. Shiryaev, Statistika sluchainykh protsessov, Gl. 1–10, Nauka, M., 1974, 7–436 ; R. S. Liptser, A. N. Shiryaev, Statistics of random processes, v. 1, Appl. Math. (N. Y.), 5, General theory, 2nd rev. and exp. ed., Springer-Verlag, Berlin, 2001, xvi+427 pp. | MR | Zbl | DOI | MR | Zbl
[19] R. F. Bass, Stochastic processes, Camb. Ser. Stat. Probab. Math., 33, Cambridge Univ. Press, Cambridge, 2011, xvi+390 pp. | DOI | MR | Zbl
[20] P. E. Kopp, Martingales and stochastic integrals, Reprint of the 1984 ed., Cambridge Univ. Press, Cambridge, 2008, xi+202 pp. | DOI | MR | Zbl